PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fringe pattern inpainting based on dual-exposure fused fringe guiding CNN denoiser prior

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The intensity of some pixels of the captured fringe will be saturated when fringe projection profilometry is used to measure objects with high reflectivity, which will significantly affect the reconstruction of the measured object. In this paper, we propose a fringe pattern inpainting method based on the convolutional neural network (CNN) denoiser prior guided by additional information from a fringe captured in short exposure time. First, a binary mask obtained by Otsu algorithm from the modulation information of the short exposure fringe is used to detect the high-saturation region in the normal exposure fringe. Then, the corrected gray-scales of the region of the short exposure fringe selected by the mask are inserted in the saturated region of the normal fringe to form an initial fringe for iteration. At last, fringe pattern inpainting is achieved by using a CNN denoiser prior. The correct phase can be reconstructed from the inpainted fringes. The computer simulation and experiments verify the effectiveness of the proposed method.
Czasopismo
Rocznik
Strony
179--193
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
  • Department of Optic-Electronic, College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan 610065, China
autor
  • Department of Optic-Electronic, College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan 610065, China
Bibliografia
  • [1] ZUO C., CHEN Q., GU G., FENG S., FENG F., High-speed three-dimensional profilometry for multiple objects with complex shapes, Optics Express 20(17), 2012, pp. 19493–19510, DOI: 10.1364/OE.20.019493.
  • [2] SONG Z., CHUNG R., ZHANG X.T., An accurate and robust strip-edge-based structured light means for shiny surface micromeasurement in 3-D, IEEE Transactions on Industrial Electronics 60(3), 2013, pp. 1023–1032, DOI: 10.1109/TIE.2012.2188875.
  • [3] SALAHIEH B., CHEN Z., RODRIGUEZ J.J., LIANG R., Multi-polarization fringe projection imaging for high dynamic range objects, Optics Express 22(8), 2014, pp. 10064–10071, DOI: 10.1364/OE.22.010064.
  • [4] ZHANG S., YAU S.T., High dynamic range scanning technique, Optical Engineering 48(3), 2009, article 033604, DOI: 10.1117/1.3099720.
  • [5] LI D., KOFMAN J., Adaptive fringe-pattern projection for image saturation avoidance in 3D surface-shape measurement, Optics Express 22, 2014, pp. 9887–9901, DOI: 10.1364/OE.22.009887.
  • [6] ZHAO H.J., LIANG X.Y., DIAO X.C., JIANG H.Z., Rapid in-situ 3D measurement of shiny object based on fast and high dynamic range digital fringe projector, Optics and Lasers in Engineering 54, 2014, pp. 170–174, DOI: 10.1016/j.optlaseng.2013.08.002.
  • [7] BUDIANTO B., LUN D.P.K., Inpainting for fringe projection profilometry based on iterative regularization, 19th International Conference on Digital Signal Processing, IEEE, 2014, pp. 668–672, DOI: 10.1109/ICDSP.2014.6900748.
  • [8] BUDIANTO B., LUN D.P. K., Inpainting for fringe projection profilometry based on geometrically guided iterative regularization, IEEE Transactions on Image Processing 24(12), 2015, pp. 5531–5542, DOI: 10.1109/TIP.2015.2481707.
  • [9] SHIJIE FENG, LIANG ZHANG, CHAO ZUO, TIANYANG TAO, QIAN CHEN, GUOHUA GU, High dynamic range 3D measurements with fringe projection profilometry: a review, Measurement Science and Technology 29(12), 2018, article 122001, DOI: 10.1088/1361-6501/aae4fb.
  • [10] OTSU N., A threshold selection method from gray-level histograms, IEEE Transactions on Systems, Man and Cybernetics 9(1), 1979, pp. 62–66, DOI: 10.1109/TSMC.1979.4310076.
  • [11] SU X.Y., CHEN W.J., Fourier transform profilometry: a review, Optics and Lasers in Engineering 35(5), 2001, pp. 263–284, DOI: 10.1016/S0143-8166(01)00023-9.
  • [12] ZUO C., FENG S.J., HUANG L., TAO T.Y., YIN W., CHEN Q., Phase shifting algorithms for fringe projection profilometry: a review, Optics and Lasers in Engineering 109, 2018, pp. 23–59, DOI: 10.1016/j.optlaseng.2018.04.019.
  • [13] SU X.Y., SU L.K., LI W.S., XIANG L.Q., A new 3D profilometry based on modulation measurement, Proc. SPIE 3558, Automated Optical Inspection for Industry: Theory, Technology, and Applications II, (10 August 1998), DOI: 10.1117/12.318337.
  • [14] ZHANG K., ZUO W.M., GU S.H., ZHANG L., Learning deep CNN denoiser prior for image restoration, IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2808–2817, DOI: 10.1109/CVPR.2017.300.
  • [15] ZHANG L., ZUO W.M., Image restoration: from sparse and low-rank priors to deep priors [Lecture Notes], IEEE Signal Processing Magazine 34(5), 2017, pp. 172–179, DOI: 10.1109/MSP.2017.2717489.
  • [16] ZORAN D., WEISS Y., From learning models of natural image patches to whole image restoration, IEEE International Conference on Computer Vision, 2011, pp. 479–486, DOI: 10.1109/ICCV.2011.6126278.
  • [17] VENKATAKRISHNAN S.V., BOUMAN C.A., WOHLBERG B., Plug-and-play priors for model based reconstruction, IEEE Global Conference on Signal and Information Processing, 2013, pp. 945–948, DOI: 10.1109/GlobalSIP.2013.6737048.
  • [18] ELAD M., AHARON M., Image denoising via sparse and redundant representation over learned dictionaries, IEEE Transactions on Image Processing 15(12), 2006, 3736–3745, DOI: 10.1109/TIP.2006.881969.
  • [19] DABOV K., FOI A., KATKOVNIK V., EGIAZARIAN K., Image denoising by sparse 3-D transform-domain collaborative filtering, IEEE Transactions on Image Processing 16(8), 2007, pp. 2080–2095, DOI: 10.1109/TIP.2007.901238.
  • [20] ZHANG K., ZUO W.M., CHEN Y.J., MENG D., ZHANG L., Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising, IEEE Transactions on Image Processing 26(7), 2017, pp. 3142–3155, DOI: 10.1109/TIP.2017.2662206.
  • [21] SCHÖNLIEB C.B, BERTOZZI A., Unconditionally stable schemes for higher order inpainting, Communications in Mathematical Sciences 9(2), 2011, pp. 413–457.
  • [22] BERTALMIO M., SAPIRO G., CASELLES V., BALLESTER C., Image inpainting, Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, John Seely Brown, USA, 2000, pp. 417–424, DOI: 10.1145/344779.344972.
  • [23] SU X.Y., CHEN W.J., Reliability-guided phase unwrapping algorithm: a review, Optics and Lasers in Engineering 42(3), 2004, pp. 245–261, DOI: 10.1016/j.optlaseng.2003.11.002.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2bcb3dd4-2834-4008-b005-6d7b3e5832b9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.