PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Steam bottoming cycles offshore - challenges and possibilities

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper addresses the challenges and possibilities related to offshore steam bottoming cycles with a special focus on once-through heat recovery steam generators (HRSGs). The main focus of the paper is to investigate the compromise between weight and efficiency of the HRSG by process simulation. The cost per installed kg of equipment is high offshore. Therefore, any bottoming cycle, applied to the back-end of the gas turbine, needs to be compact, yet sufficiently efficient. Important parameters to make the HRSG compact were the number of steam pressure levels, the HRSG technology, the flue gas pressure drop in the HRSG, and the pinch-point temperature difference. While selecting the parameters as a compromise between weight and efficiency, the combined cycle net plant efficiency was found to be approximately 50% with a power output of 43 MW. The steam turbine gross power output was 11 MW or about 25% of the total combined cycle plant gross power output. These results were compared to an onshore reference plant model which utilized the same type of aeroderivative gas turbine. The weight of the offshore once-through HRSG was about one third of the onshore HRSG. The net plant efficiency was 3%-points lower for the offshore system.
Rocznik
Strony
201--207
Opis fizyczny
Bibliogr. 17 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Energy and Process Engineering Norwegian University of Science and Technology, Trondheim, Norway
autor
  • Department of Energy and Process Engineering Norwegian University of Science and Technology, Trondheim, Norway
Bibliografia
  • [1] S. A. Lloyd, Co-generation in offshore process platforms, in: 5th International Symposium and Exposition on Gas Turbines in Cogeneration, Repowering, and Peak-Load Power Generation; Budapest, Hungary, ASME IGTI Vol. 6, 1991, pp. 281–286.
  • [2] R. Farmer, North Sea platforms are converting mech drives to comb cycle operation, Gas Turbine World November-December (1998) 12–16.
  • [3] P. Kloster, Energy optimization on offshore installations with emphasis on offshore combined cycle plants, in: Off-shore Europe Conference; Aberdeen, Scotland, Society of Petroleum Engineers Inc., 1999, paper no. SPE 56964.
  • [4] M. F. Brady, Design aspects of once through systems for heat recovery steam generators for base load and cyclic operation, Materials at High Temperatures 18 (4) (2001) 223–229.
  • [5] [link]. URL http://www.otsg.com
  • [6] J. Franke, U. Lenk, R. Taud, F. Klauke, Advanced Benson HRSG makes a successful debut, Modern Power Systems 20 (7) (2000) 33–35.
  • [7] M. Mucino, Y. G. Li, J. Ojile, M. Newby, Advanced performance modelling of a single and double pressure once through steam generator, Vol. 3 of Proceedings of ASME Turbo Expo, 2007, pp. 663–673, paper no. GT2007-27505.
  • [8] M. N. Dumont, G. Heyen, Mathematical modelling and design of an advanced once-through heat recovery steam generator, Computers and Chemical Engineering 28 (5) (2004) 651–660.
  • [9] G. D. Ngoma, A. Sadiki, R. Wamkeue, Efficient approach in modelling and simulation of dual pressure oncethrough heat recovery steam generator, Vol. 7 of Proceedings of the Seventh IASTED International Conference - Power and Energy Systems, 2003, pp. 218–223.
  • [10] The Babcock & Wilcox Company, Steam/its generation and use, 41st Edition, The Babcock & Wilcox Company, Barberton, Ohio, USA, 2005, ISBN 0963457012.
  • [11] H. Alvarez, Energiteknik, 3rd Edition, Vol. 2, Studentlitteratur AB, Lund, Sweden, 2006, ISBN 9789144045108.
  • [12] F. Gabrielli, H. Schwevers, Design factors and water chemistry practices - supercritical power cycles, in: R. Span, I. Weber (Eds.), 15th International Conference on the Properties of Water and Steam, VDI - The Association of German Engineers; GET - Society for Energy Technology, Düsseldorf, Germany, 2008, pp. 1–15.
  • [13] IAPWS, Technical guidance document: Volatile treatments for the steam-water circuits of fossil and combined cycle/HRSG power plants, International Association for the Properties of Water and Steam, 2010, http://www.iapws.org.
  • [14] F. Starr, Background to the design of HRSG systems and implications for CCGT plant cycling, Power Plant: Operation Maintenance and Materials Issues 2 (1) (2003) 1–17.
  • [15] Thermoflow, GT PRO and PEACE Version 21, Thermoflow Inc., 2011.
  • [16] W. Wagner, J. R. Cooper, A. Dittmann, J. Kijima, H. J. Kretzschmar, A. Kruse, R. Mareš, K. Oguchi, H. Sato, I. Stöcker, O. Šifner, Y. Takaishi, I. Tanishita, J. Trübenbach, T. Willkommen, The IAPWS industrial formulation 1997 for the thermodynamic properties of water and steam, Journal of Engineering for Gas Turbines and Power 122 (1) (2000) 150–180.
  • [17] R. De Meo, M. D’Ercole, A. Russo, F. Gamberi, F. Gravame, D. Mucz, PGT25+G4 gas turbine development, validation and operating experience, Vol. 7 of Proceedings of ASME Turbo Expo, 2008, pp. 529–538, paper no. GT2008-50159.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2bc3d998-57c0-4b88-92f1-f912b7839a9a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.