Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Synthesized dihydroxylammonium 5,5’-bistetrazole-1,1’-diolate (TKX-50) owes its outstanding application prospects in the field of insensitive solid propellants not only to its high energetic performance but also to its low mechanical sensitivity. Based on the excellent catalytic activity of bimetallic iron oxides for the thermal decomposition of TKX-50, the catalytic mechanism of bimetallic iron oxides (NiFe2O4, ZnFe2O4 and CoFe2O4) for TKX-50 pyrolysis has been explored. For this study, the decomposition process of TKX-50, before and after mixing with the bimetallic iron oxides NiFe2O4, ZnFe2O4 and CoFe2O4 was monitored by in-situ FTIR and gas-phase MS-FTIR instruments. Of the different catalysts, ZnFe2O4 gave the best result for reducing the initial decomposition temperature of TKX-50. Additionally, the activation energy of functional group cleavage of TKX-50, before and after mixing with ZnFe2O4, was also calculated for mechanism analysis from the results of the in-situ FTIR measurements. The results showed that the condensate and the gas-phase decomposition products of TKX-50 remained unchanged after mixing with different catalysts, while the activation energy of tetrazole ring cleavage was significantly reduced. The results of this study will be helpful for the rational design of insensitive solid propellant formulations containing TKX-50, and for understanding the pyrolysis mechanisms of TKX-50 before and after mixing with the efficient catalyst ZnFe2O4.
Słowa kluczowe
Rocznik
Tom
Strony
223--244
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
- Xi’An Modern Chemistry Research Institute, China
- Shanxi North Xing’an Chemical Industry Co., Ltd, China
autor
- Xi’An Modern Chemistry Research Institute, China
autor
- Xi’An Modern Chemistry Research Institute, China
autor
- Xi’An Modern Chemistry Research Institute, China
autor
- Xi’An Modern Chemistry Research Institute, China
autor
- Xi’An Modern Chemistry Research Institute, China
autor
- Xi’An Modern Chemistry Research Institute, China
autor
- Xi’An Modern Chemistry Research Institute, China
autor
- Xi’An Modern Chemistry Research Institute, China
Bibliografia
- [1] Li, H.; Zhao, F.Q.; Gao, H.X.; Tong, J.F.; Wang, B.Z.; Zhai, L.J.; Huo, H. Three Energetic Salts Based on Oxy-bridged Bis(gem-Dinitro) Furazan: Syntheses, Structures and Thermal Behaviors. Inorg. Chim. Acta 2014, 423: 256-262.
- [2] Anniyappan, M.; Sonawane, S.H.; Pawar, S.J.; Sikder, A.K. Thermal Decomposition and Kinetics of 2,4-Dinitroimidazole: An Insensitive High Explosive. Thermochim. Acta 2015, 614: 93-99.
- [3] Walsh, M.R.; Thiboutot, S.; Walsh, M.E.; Ampleman, G. Controlled Expedient Disposal of Excess Gun Propellant. J. Hazard. Mater. 2012, 219-220: 89-94.
- [4] Liu, L.; Li, J.; Zhang, L.; Tian, S. Effects of Magnesium-based Hydrogen Storage Materials on the Thermal Decomposition, Burning Rate, and Explosive Heat of Ammonium Perchlorate-based Composite Solid Propellant. J. Hazard. Mater. 2018, 342: 477-481.
- [5] Wang, Y.L.; Zhao, F.Q.; Ji, Y.P.; Yan, Q.L.; Yi, J.H.; Xu, S.Y.; Lu, X.M. Synthesis and Thermal Behaviors of 1,8-Dihydroxy-4,5-dinitroanthraquinone Barium Salt. J. Anal. Appl. Pyrolysis 2014, 105: 295-300.
- [6] Wu, Q.; Zhu, W.; Xiao, H. A New Design Strategy for High-energy Low-sensitivity Explosives: Combining Oxygen Balance Equal to Zero, a Combination of Nitro and Amino Groups, and N-Oxide in One Molecule of 1-Amino-5-nitrotetrazole-3N-oxide. J. Mater. Chem. A 2014, 2: 13006-13015.
- [7] Li, Y.; Huang, H.; Shi, Y.; Yang, J.; Pan, R.; Lin, X. Potassium Nitraminofurazan Derivatives: Potential Green Primary Explosives with High Energy and Comparable Low Friction Sensitivities. Chem. – Eur. J. 2017, 23: 7353-7360.
- [8] Zhang, X.Q.; Yuan, J.N.; Selvaraj, G.; Ji, G.F.; Chen, X.R.; Wei, D.Q. Towards the Low-sensitive and High-energetic Co-Crystal Explosive CL-20/TNT: from Intermolecular Interactions to Structures and Properties. Phys. Chem. Chem. Phys. 2018, 20: 17253-17261.
- [9] Sinditskii, V.P.; Filatov, S.A.; Kolesov, V.I.; Kapranov, K.O.; Asachenko, A.F.; Nechaev, M.S.; Shishov, N.I. Combustion Behavior and Physico-Chemical Properties of Dihydroxylammonium 5,5′-Bistetrazole-1,1′-diolate (TKX-50). Thermochim. Acta 2015, 614: 85-92.
- [10] Didier, M. Sensitivity of Energetic Materials: Theoretical Relationships to Detonation Performance and Molecular Structure. Ind. Eng. Chem. Res. 2017, 56: 8191-8201.
- [11] An, Q.; Cheng, T.; Goddard, W.A.; Zybin, S.V. Anisotropic Impact Sensitivity and Shock Induced Plasticity of TKX-50 (Dihydroxylammonium 5,5′-Bis(tetrazole)-1,1′-diolate) Single Crystals: From Large-Scale Molecular Dynamics Simulations. J. Phys. Chem. C 2015, 119: 2196-2207.
- [12] Wang, Y.; Zhu, J.; Yang, X.; Lu, L.; Wang, X. Preparation of NiO Nanoparticles and Their Catalytic Activity in the Thermal Decomposition of Ammonium Perchlorate. Thermochim. Acta 2005, 437: 106-109.
- [13] Yan, Q.L.; Liu, L.L.; He, W.; Luo, C.; Shlomovich, A.; Liu, P.-J.; Gozin, M. Decomposition Kinetics and Thermolysis Products Analyses of Energetic Diaminotriazole-substituted Tetrazine Structures. Thermochim. Acta 2018, 667: 19-26.
- [14] Wang, J.; Ma, X.; Yu, Z.; Peng, X.; Lin, Y. Studies on Thermal Decomposition Behaviors of Demineralized Low-lipid Microalgae by TG-FTIR. Thermochim. Acta 2018, 660: 101-109.
- [15] Huang, H.; Shi, Y.; Yang, J. Thermal Characterization of the Promising Energetic Material TKX-50. J. Therm. Anal. Calorim. 2015, 121: 705-709.
- [16] Jia, J.; Liu, Y.; Huang, S.; Xu, J.; Li, S.; Zhang, H.; Cao, X. Crystal Structure Transformation and Step-by-Step Thermal Decomposition Behavior of Dihydroxylammonium 5,5′-Bistetrazole-1,1′-diolate. RSC Adv. 2017, 7: 49105-49113.
- [17] Muravyev, N.V.; Monogarov, K.A.; Asachenko, A.F.; Nechaev, M.S.; Ananyev, I.V.; Fomenkov, I.V.; Pivkina, A.N. Pursuing Reliable Thermal Analysis Techniques for Energetic Materials: Decomposition Kinetics and Thermal Stability of Dihydroxylammonium 5,5′-Bistetrazole-1,1′-diolate (TKX-50). Phys. Chem. Chem. Phys. 2017, 19: 436-449.
- [18] Yi, J.H.; Zhao, F.Q.; Hong, W.L.; Xu, S.Y.; Hu, R.Z.; Chen, Z.Q.; Zhang, L.Y. Effects of Bi-NTO Complex on Thermal Behaviors, Nonisothermal Reaction Kinetics and Burning Rates of NG/TEGDN/NC Propellant. J. Hazard. Mater. 2010, 176: 257-261.
- [19] Ming Zhang, M.; Zhao, F.; Wang, Y.; Chen, X.; Pei, Q.; Xu, H.; Hao, H.; Yang, Y.; Li, H. Evaluation of Graphene-Ferrocene Nanocomposite as Multifunctional Combustion Catalyst in AP-HTPB Propellant. Fuel 2021, 302, paper 121229: 1-9.
- [20] Zhang, M.; Zhao, F.; Yang, Y.; Li, H.; Gao, H.; Yao, E.; Zhang, J.; An, T.; Jiang, Z. Synthesis, Characterization and Catalytic Behavior of MFe2O4 (M = Ni, Zn and Co) Nanoparticles on the Thermal Decomposition of TKX-50. J. Therm. Anal. Calorim. 2020, 141: 1413-1423.
- [21] Zhang, M.; Zhao, F.; Yang, Y.; An, T.; Qu, W.; Li, H.; Zhang, J.; Li, N. Catalytic Activity of Ferrates (NiFe2O4, ZnFe2O4 and CoFe2O4) on the Thermal Decomposition of Ammonium Perchlorate. Propellants Explos., Pyrotech. 2020, 45: 463-471.
- [22] Zhang, M.; Zhao, F.; Yang, Y.; Li, H.; Zhang, J.; Ma, W.; Gao, H.; Li, N. Shape-Dependent Catalytic Activity of Nano-Fe2O3 on the Thermal Decomposition of TKX-50. (in Chinese) Acta Phys.-Chim. Sin. 2020, 36, paper 1904027.
- [23] Zhang, M.; Zhao, F.; Yang, Y.; Zhang, J.; Li, N.; Gao, H. Effect of rGO-Fe2O3 Nanocomposites Fabricated in Different Solvents on the Thermal Decomposition Properties of Ammonium Perchlorate. CrystEngComm 2018, 20: 7010-7019.
- [24] Vovk, E.I.; Turksoy, A.; Bukhtiyarov, V.I.; Ozensoy, E. Interactive Surface Chemistry of CO2 and NO2 on Metal Oxide Surfaces: Competition for Catalytic Adsorption Sites and Reactivity. J. Phys. Chem. C 2013, 117: 7713-7720.
- [25] Singh, S.; Wu, C.; Williams, P.T. Pyrolysis of Waste Materials using TGA-MS and TGA-FTIR as Complementary Characterisation Techniques. J. Anal. Appl. Pyrolysis 2012, 94: 99-107.
- [26] Wang, J.; Chen, S.; Jin, S.; Shi, R.; Yu, Z.; Su, Q.; Shu, Q. The Primary Decomposition Product of TKX-50 under Adiabatic Condition and Its Thermal Decomposition. J. Therm. Anal. Calorim. 2018, 134: 2049-2055.
- [27] Wang, J.; Chen, S.; Yao, Q.; Jin, S.; Zhao, S.; Yu, Z.; Shu, Q. Preparation, Characterization, Thermal Evaluation and Sensitivities of TKX-50/GO Composite. Propellants, Explos., Pyrotech. 2017, 42: 1104-1110.
- [28] Zhang, M.; Zhao, F.; Yang, Y.; Li, H.; An, T.; Zhang, J. The Effect of rGOFe2O3 Nanocomposites with Spherical, Hollow and Fusiform Microstructures on the Thermal Decomposition of TKX-50. J. Phys. Chem. Solids 2021, 153, paper 109982: 1-7.
- [29] Zhang, M.; Zhao, F.; Li, H.; Yang, Y.; An, T.; Jiang, Y.; Li, N. Morphologydependent Catalytic Activity of Fe2O3 and its Graphene-based Nanocomposites on the Thermal Decomposition of AP. FirePhysChem 2021, 1: 46-53.
- [30] Huang, H.; Shi, Y.; Yang, J. Thermal Characterization of the Promising Energetic Material TKX-50. J. Therm. Anal. Calorim. 2015, 121: 705-709.
- [31] García Rodenas, L.A.; Blesa, M.A.; Morando, P.J. Reactivity of Metal Oxides: Thermal and Photochemical Dissolution of MO and MFe2O4 (M = Ni, Co, Zn). J. Solid State Chem. 2008, 181: 2350-2358.
- [32] Chen, S.; Zhang, H.; Wu, L.; Zhao, Y.; Huang, C.; Ge, M.; Liu, Z. Controllable Synthesis of Supported Cu–M (M = Pt, Pd, Ru, Rh) Bimetal Nanocatalysts and Their Catalytic Performances. J. Mater. Chem. 2012, 22: 9117-9122.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2bbfff00-f3e2-419f-bef6-b98575796b56