PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A computationally efficient finite control set model predictive current control for reluctance synchronous motor

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Wydajne obliczeniowo sterowanie predykcyjne prądami synchronicznego silnika reluktancyjnego
Języki publikacji
EN
Abstrakty
EN
The paper presents a computationally efficient finite control set model predictive current control (FCS-MPC) for reluctance synchronous motor (RSM). Non-linear characteristics of d-q inductances have been applied to obtain an accurate model of the machine. These were used to calculate the maximum torque per ampere (MTPA) strategy. The reduction of the computational effort is obtained by decreasing the number of considered voltage vectors during selection. Extensive and accurate simulation studies indicate high-performance operation and torque ripple reduction of the drive.
PL
W artykule przedstawiono sterowanie predykcyjne prądami synchronicznego silnika reluktancyjnego charakteryzujące się zredukowaną złożonością obliczeniową. W układzie regulacji zaimplementowano strategię sterowania maksymalizującą rozwijany przez silnik moment elektromagnetyczny oraz szczegółowy model matematyczny uwzględniający zmienne indukcyjności w funkcji prądów. Zmniejszenie złożono ści obliczeniowej uzyskano przez ograniczenie liczby wektorów stosowanych w procesie wyznaczania optymalnego sterowania. Wyniki badań symulacyjnych wykazały wysoką jakość pracy napędu oraz redukcję tętnień momentu elektromagnetycznego.
Rocznik
Strony
243--250
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
  • Nicolaus Copernicus University in Torun, Insitute of Engineering and Technology
  • Nicolaus Copernicus University in Torun, Insitute of Engineering and Technology
  • Nicolaus Copernicus University in Torun, Insitute of Engineering and Technology
Bibliografia
  • [1] Oliveira F., Ukil A.: Comparative Performance Analysis of Induction and Synchronous Reluctance Motors in Chiller Systems for Energy Efficient Buildings IEEE Transactions on Industial Informatics, Vol. 15, No. 8, 2019
  • [2] Murataliyev M., M. Degano, M. Di Nardo, N. Bianchi, C. Gerada.: Synchronous Reluctance Machines: A Comprehensive Review and Technology Comparison, Proceedings of the IEEE, p. 382 - 399, 11 February 2022
  • [3] Im J. B., Kim W., Kim K., Jin C. S., Choi J. H., Lee J.: Inductance Calculation Method of Synchronous Reluctance Motor Including Iron Loss and Cross Magnetic Saturation, IEEE Transactions on Magnetics, Vol. 45, no. 6, 2009
  • [4] Niedworok A., Orzech Ł.: Assessment of efficiency of drive equipped with induction motor and drive equipped with reluctance motor, Przeglad Elektrotechniczny, ISSN 0033-2097, R. 92 NR 8/2016 (in Polish)
  • [5] Li J. C., Xin M., Fan Z. N., Liu R.: Design and Experimental Evaluation of a 12 kW Large Synchronous Reluctance Motor and Control System for Elevator Traction, IEEE Access,Vol. 8, 2020
  • [6] Lin F.J., Huang M.S., Chen S. G., Hsu C. W., Liang C. H.: Adaptive Backstepping Control for Synchronous Reluctance Motor Based on Intelligent Current Angle Control, IEEE Transactions on Power Electronics, Vol. 35, No. 7, 2020
  • [7] Boldea, I., Tutelea L.: Reluctance Electric Machines: Design and Control, CRC Press, 2018
  • [8] Tarczewski T., Niewiara Ł. J., Grzesiak L.: Gain-Scheduled State Feedback Speed Control of Synchronous Reluctance Motor, 2021 IEEE 19th International Power Electronics and Motion Control Conference (PEMC), 25-29 April 2021, Gliwice, Poland
  • [9] Awan H. A. A., Saarakkala S. E., Hinkkanen M.: Assessment of efficiency of drive equipped with induction motor and drive equipped with reluctance motor, Flux-Linkage-Based Current Control of Saturated Synchronous Motors, IEEE Transactions on Industry Application, Vol. 55, No. 5, 2019
  • [10] Zhang X., Sun L., Zhao K., Sun L.: Nonlinear Speed Control for PMSM System Using Sliding-Mode Control and Disturbance Compensation Techniques, IEEE Transactions on Power Electronics , Vol. 28, No. 3, 2013
  • [11] Bingyou L.: Research on H infinity Robust Tracking Controller for Permanent Magnet Synchronous Motor Servo System, 2009 International Conference on Information Engineering and Computer Science, 19-20 Dec. 2009, Wuhan, China
  • [12] Farhan A., Abdelrahem M., Saleh A., Shaltout A., Kennel R.: Simplified Sensorless Current Predictive Control of Synchronous Reluctance Motor Using Online Parameter Estimation, MDPI, Energies, 2020
  • [13] Miloud G., Hicham S., Youcef B.: Sensorless Speed Control of Synchronous Reluctance Motors Using Model Predictive control associated with Model Reference Adaptive System, 2021 IEEE 1st International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering MI-STA, 2021
  • [14] Y. Yamamoto, S. Morimoto, M. Sanada, Y. Inoue.: Torque Ripple Reduction Using Asymmetric Flux Barriers in Synchronous Reluctance Motor, 2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia), Niigata, Japan
  • [15] H. Mahmoud, G. Bacco, M. Degano, N. Bianchi, C. Gerada.: Synchronous Reluctance Motor Iron Losses: Considering Machine Nonlinearity at MTPA, FW, and MTPV Operating Conditions, IEEE Transactions On Energy Conversion, Vol. 33, No 3, September 2018
  • [16] Y. Li, Z. Liu, X. Wang, G. Chen, C. Ren, D. Liu.: Simplified Multi-Step Predictive Current Control for Surface Permanent Magnet Synchronous Motor The 6th IEEE International Conference on Predictive Control of Electrical Drives and Power Electronics, 2021
  • [17] Y. Li, X. Wang, Z. Liu, G. Chen, D. Liu, C. Ren.: Simplified Control Strategy for Permanent Magnet Synchronous Motor Model Predictive Torque Control The 6th IEEE International Conference on Predictive Control of Electrical Drives and Power Electronics, 2021
  • [18] Y. Li, Z. Liu, X. Wang, G. Chen, C. Ren, D. Liu.: Low-Complexity Finite Control Set Model Predictive Control With Current Limit for Linear Induction Machines IEEE Transactions On Industrial Electronics, Vol. 65, No. 12, December 2018
  • [19] S. Yamamoto, T. Ara, K. Matsuse.: A Method to Calculate Transient Characteristics of Synchronous Reluctance Motors Considering Iron Loss and Cross-Magnetic Saturation, IEEE Transactions on Industry Applications, Vol. 43, No. 1, 2007
  • [20] R. Surus, Ł. Niewiara, T. Tarczewski, L. M. Grzesiak.: Finite control set model predictive current control for reluctance synchronous motor, The 20th IEEE International Conference on Power Electronics And Motion Control, 2022
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2bbe9618-eef1-454b-ae92-a3fdbd3f59ec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.