Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Stable and efficient nitrogen removal is one of main goals of wastewater treatment. Applying deammonification, beyond many advantages, results in the risk of the WWTP effluent quality violation in case of the failure of the process. Then nitrogen load to activated sludge is increasing rapidly which could therefore lead to quality violation in activated sludge effluent. Simulation studies have been presented on the effect of deammonification failure on nitrogen removal performance in the case of a typical, medium sized WWTP (ca. 115 000 PE). The studies were based on the calibrated ASMI model of real WWTP and a fictional scenario of implementing deammonification and subsequent failure. Implementing deammonification enables SR T optimization of the sludge retention time (SRT) in its main line thanks to lower nitrogen load. Two scenarios have been shown, considering or not optimization of the SRT in WWTP. The results show that SRT optimization leads to decrease in nitrifier mass and raises difficult issues in appropriate nitrogen concentration in the effluent.
Czasopismo
Rocznik
Tom
Strony
169--179
Opis fizyczny
Bibliogr. 19 poz., rys.
Twórcy
autor
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspiańskiego 27, Wrocław, 507-370, Poland Municipal Water and Sewage Company, Wrocław, ul. Na Grobli 14/16, Wrocław, 50-421, Poland
autor
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspiańskiego 27, Wrocław, 507-370, Poland
autor
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspiańskiego 27, Wrocław, 507-370, Poland
Bibliografia
- [1] VAN LOOSDRECHT M.C., BRDJANOVIC D., Anticipating the next century of wastewater treatment, Science, 2014, 344 (6191), 1452.
- [2] MEYER S.S., WILDERER P.A., Reject water, Treating of process water in large wastewater treatment plants in Germany, A case study, J. Environ. Sci. Health A, 2004, 39 (7), 1645.
- [3] PEETERS J., VICEVIC G., KOOPS G.H., CÔTÉ P., The role of innovative technologies in achieving energy- -neutral wastewater treatment, Water Pract. Tech., 2016, 11 (4), 691.
- [4] NOWAK O., KEIL S., FIMML C., Examples of energy self-sufficient municipal nutrient removal plants, Water Sci. Techn., 2011, 64 (1), 1.
- [5] STROUS M., KUENEN J.G., JETTEN M.S.M., Key physiology of anaerobic ammonium oxidation, Appl. Environ. Microb., 1999, 65 (7), 3248.
- [6] LACKNER S., GILBERT E.M., VLAEMINCK S.E., JOSS A., HORN H., VAN LOOSDRECHT M.C.M., Full scale partial nitritation/anammox experiences. An application survey. Water Res., 2014, 55, 292.
- [7] JIN R.C., YANG G.F., YU J.J., ZHENG P., The inhibition of the Anammox process. A review, Chem. Eng. J., 2012, 197, 67.
- [8] KARTAL B., VAN NIFTRIK L., KELTJENS J.T., OP DEN CAMP H.J., JETTEN M.S., Anammox growth physiology, cell biology, and metabolism, Adv. Microbiol. Physiol., 2012, 60, 212.
- [9] MA B., WANG S., CAO S., MIAO Y., JIA F., DU R., PENG Y., Biological nitrogen removal from sewage via anammox. Recent advances, Biores. Technol., 2016, 200, 981.
- [10] VÁZQUEZ-PADÍN J.R., MORALES N., GUTIÉRREZ R., FERNÁNDEZ R., ROGALLA F., BARRIO J.P., MÉNDEZ R., Implications of full-scale implementation of an anammox-based process as post-treatment of a municipal anaerobic sludge digester operated with co-digestion, Water Sci. Technol., 2014, 69 (6), 1151.
- [11] MORALES N., DEL RÍO Á.V., VÁZQUEZ-PADÍN J.R., MÉNDEZ R., MOSQUERA-CORRAL A., CAMPOS J.L., Integration of the Anammox process to the rejection water and main stream lines of WWTPs, Chemosphere, 2015, 140, 99.
- [12] NOWAK O., ENDERLE P., VARBANOV P., Ways to optimize the energy balance of municipal wastewater systems. Lessons learned from Austrian applications, J. Clean Prod., 2015, 88, 125.
- [13] HAUCK M., MAALCKE-LUESKEN F.A., JETTEN M.S., HUIJBREGTS M.A., Removing nitrogen from wastewater with side stream anammox. What are the trade-offs between environmental impacts?, Res. Cons. Rec., 2016, 107, 212.
- [14] KAMPSCHREUR M.J., POLDERMANS R., KLEEREBEZEM R., VAN DER STAR W.R.L., HAARHUIS R., ABMA W.R., VAN LOOSDRECHT M.C.M., Emission of nitrous oxide and nitric oxide from a full-scale single-stage nitritation-anammox reactor, Water Sci. Technol., 2009, 60 (12), 3211.
- [15] GE H., BATSTONE D.J., KELLER J., Operating aerobic wastewater treatment at very short sludge ages enables treatment and energy recovery through anaerobic sludge digestion, Water Res., 2013, 47 (17), 6546.
- [16] WETT B., Development and implementation of a robust deammonification process, Water Sci. Technol., 2007, 56 (7), 81.
- [17] NIFONG A., NELSON A., JOHNSON C., BOTT C.B., Performance of a full-scale sidestream DEMON® deammonification installation, Proc. Water Environment Federation, 2013 (13), 3686.
- [18] JOSS A., DERLON N., CYPRIEN C., BURGER S., SZIVAK I., TRABER J., MORGENROTH E., Combined nitritation Anammox. Advances in understanding process stability, Environ. Sci. Technol., 2011, 45 (22), 9735.
- [19] HENZE M., GUJER W., MINO T., LOOSDRECHT M., Activated sludge models ASM1, ASM2, ASM2d and ASM3, IWA Scientific and Technical Report, No. 9, IWA, London 2000.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2bb385ba-4340-4836-a69e-6bb4498697f9