PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Domains and Solutions of the Braess Paradox

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Braess paradox in road planning presents a case, where adding a new connection in a road network may lead to delayed arrival because of violation of the balance in the traffic flow. The paper discusses a generalization of this paradox. The initial, the asymmetrical, and the Pareto optimal domain are identified. Administrative solution with the participation of a controller is introduced, which aims to minimize the time of arrival, and thus has an environmental aspect. The preferences of the groups of passengers in the vehicles are modeled by an analytical arctan-approximated utility. Nash arbitration is employed to find an optimal solution that maximizes the Nash utility criterion. It is performed over the optimal Pareto domain that is outlined in four stages. A numerical example with 40 vehicles and five types of preferences of the passengers demonstrates the ideas.
Rocznik
Strony
17--43
Opis fizyczny
Bibliogr. 11 poz., rys., tab.
Twórcy
  • N. Vaptsarov Naval Academy, 73 V. Drumev Str., 9026 Varna, Bulgaria
  • Technical University – Gabrovo, 4 Hadji Dimitar Str., 5400 Gabrovo, Bulgaria
  • Dr. Petar Beron Mathematical Highschool, Chaika, 9010 Varna, Bulgaria
  • N. Vaptsarov Naval Academy, 73 V. Drumev Str., 9026 Varna, Bulgaria
Bibliografia
  • 1. Braess, D., Nagurney, A.,Wakolbinge T., 2005, On a Paradox of Traffic Planning, Transportation Science, Vol. 39, No. 4, pp. 446-450.
  • 2. French, S, 1993, Decision theory: an Introduction to the Mathematics of Rationality, Elis Horwood.
  • 3. Knödel, W., 1969, Graphentheoretische Methoden und ihre Anwendun-gen, Springer-Verlag. pp. 57–9.
  • 4. Kolata, G., 1990, What if They Closed 42d Street and Nobody Noticed?, New York Times, Retrieved 2008-11-16.
  • 5. Nash, J., 1950, The Bargaining Problem, Econometrica, Volume 18, No. 2, pp. 155–162.
  • 6. Nikolova, N.D., 2007, Arctg-approximation of Monotonically Decreasing Utility Functions, Computer Science and Technology, Volume 1, pp. 60- 69
  • 7. Nikolova, N.D., Armenski, I., Tenekedjieva, L-T., Toneva-Zheynova, D., 2012, Multi-dimensional Nash arbitration in the Braess Paradox, Proc. 13th International IFAC Symposium on Control in Transportation Systems CTS’2012, September 2012, Sofia, Bulgaria (in print)
  • 8. Osborne, M.J., Rubenstein A., 1994, А Course in Game Theory, The Maple-Vail Book Manufacturing Group
  • 9. Tenekedjieva, L-T., 2012a, Finding the Pareto domain in the Braess pa-radox for even number of vehicles, 12th Student Conference of the Insti-tute of Mathematics and Informatics, Gabrovo, Bulgaria (in Bulgarian).
  • 10. Tenekedjieva, L., 2012, Administrative and Arbitrary Decisions in Braess’s Paradox, XXXXI Spring Conference of the Union of the Mathe-maticians in Bulgaria, Student Section, Borovetz, 9-12 April 2012, Bul-garia (in Bulgarian).
  • 11. Von Neumann, J., O. Morgenstern, 1947, Theory of Games and Economic Behavior. Second Edition. Princeton University Press.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2bb18424-76ad-4fa4-abb5-730d50ce35b0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.