PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental and Simulation Tests on the Impact of the Conditions of Casting Solidification from AlSi9Cu3 Alloy on their Structure and Mechanical Properties

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The impact of casting conditions on microstructure a and mechanical properties was described, especially for cast products from AlSi9Cu3 alloy. Particular attention was paid to the parameters of dendritic structure: DAS 1 and DAS 2. Selected mechanical properties (by static tension test) of test castings made using basic technologies of casting: GSC - gravity sand casting, GDC - gravity die-casting and HPDC - high-pressure die-casting, are presented for cast-on test bars and cast separately. Casts were made of the same alloy AlSi9Cu3. Fractures and the zone near the fracture (after static tension test) was subjected to VT - visual tests, PT - penetration tests and metallographic tests. The condition of porosity (fracture zone) was also assessed. The analysis of virtual results was performed using the NovaFlow & Solid system together with the database and they were compared to experimental tests. This way of validation was applied in order to assess the correlation between the local rate of cooling and the size of DAS for GSC, GDC and HPDC technologies. Finally, the correlation between the parameters of structure and mechanical properties with regard to the impact of porosity was signalized.
Rocznik
Strony
167--175
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
  • Poznan University of Technology, Division of Foundry, Piotrowo 3, Poznań, Poland
autor
  • Poznan University of Technology, Division of Foundry, Piotrowo 3, Poznań, Poland
Bibliografia
  • [1] Shabestari, S.G. (2004). The effect of iron and manganese on the formation of intermetallic compounds in aluminum– silicon alloys. Materials Science and Engineering A. 383, 289.
  • [2] Martinez, D.E.J., Cisneros, G.M.A., Valtierra, S. & Lacaze, J. (2005). Effect of strontium and cooling rate upon eutectic temperatures of A319 aluminum alloy. Scripta Materialia 52, 439.
  • [3] Pietrowski, St. (2001). Silumins. Publ. House of Lodz Univ. of Tech., Poland (in Polish).
  • [4] Cáceres, C.H. et.al., (1999). The effect of Cu content on the level of microporosity in Al-Si-Cu-Mg casting alloys, Scripta Materialia. 40(5), 631.
  • [5] Campbell, J. (2015). Complete Casting Handbook. 2nd Edition., Butterworth-Heinemann.
  • [6] Orłowicz, A.W. & Mróz, M. (2003). Application of Arc Electric For Forming Structure and Fusion Zone Geometry on Al-Si Alloy Castings. Archives of Foundry. 3(10), 81 (in Polish).
  • [7] Ignaszak, Z., Popielarski, P. & Hajkowski, J. (2013). Sensitivity of models applied in selected simulation systems with respect to database quality for resolving of casting problems, Defect and Diffusion Forum. 336, 135.
  • [8] Ignaszak. Z. & Hajkowski, J. (2015). Gas-and Shrinkage Porosities in Al-Si High-Pressure Die-Castings- Virtualization and Experimental Validation. Defect and Diffusion Forum. 364, 80.
  • [9] Ignaszak, Z. (2011). Conditions and perspectives for non-destructive testing of castings before they service. part II Welding Technology Review. 83(13), 41 (in Polish).
  • [10] Hall, E.O. (1951). Proc Phys. Soc. B64, 747.
  • [11] Petch, N.J. (1953). J. Iron Steel Inst. 174, 25.
  • [12] Bernsztejn, M.L. & Zajmovskij, W.A. (1973). Structure and mechanical properties of metals. WNT, Poland, (in Polish)
  • [13] Tensi, H.M. & Högerl, J. (1994). Metallographische Gefuge-Untersuchungen zur Qualitatssicherung von AlSi- Gussbauteilen. Metallwiessenschaft und Technik. 48(10), 776.
  • [14] Kurz, W. & Fisher, D.J. (1992). Fundamentals of Solidification. Trans Tech Publ., Switzerland.
  • [15] Peres, M.D., Siqueira, C.A. & Garcia, A. (2004). Macrostructural and microstructural development in Al–Si alloys directionally solidified under unsteady-state conditions. Journal of Alloys and Compounds. 381, 168.
  • [16] Steinbach, S. & Ratke, L. (2005). The effect of rotating magnetic fields on the microstructure of directionally solidified Al–Si–Mg alloys. Materials Science and Engineering A. 413-414, 200.
  • [17] Bouchard, D., Kirkaldy, J.S. (1997). Prediction of dendrite arm spacings in unsteady- and steady-state heat flow of unidirectional solidified binary alloys. Metall. Mater. Trans. B. 28, 651.
  • [18] Hunt, J.D. & Lu, S.Z. (1996). Numerical modeling of cellular/dendritic array growth: spacing and structure predictions. Metallurgical and Materials Transactions A. 27, 611.
  • [19] Kattamis, T.Z. & Flemings, M.C. (1984). Trans. Metallurgical Society of AIME. 15A, 1081.
  • [20] Feurer, U. & Wunderlin, R. (1977). Einfluss der zuzammensetzung und der erstarrungs-bidingungen auf die dendritenmorphologie binarer Al-legierunger. Fachbericht der Deutschen Gesellschaft fiir Metallkunde, Oberursel. 1.
  • [21] Olofsson, J. et.al. (2014). Characterisation and investigation of local variations in mechanical behaviour in cast aluminium using gradient solidification, digitalimage correlation and finite element simulation. Materials and Design. 56, 755.
  • [22] Hajkowski, M. et.al. (2012). Mechanical Properties of Al- Si-Mg Alloy Castings as a Function of Structure Refinement and Porosity Fraction. Archives of Foundry Engineering. 12(4), 57.
  • [23] Hufnale, W. (1983). Aluminium-Taschenbuch, Aluminium-Verlag, Dusseldorf.
  • [24] http://folk.ntnu.no/ragmat/
  • [25] Major, J.F. (1994). Porosity Control and Fatigue Behavior in A356-T61 Aluminum Alloy. AFS Transactions, 97, 901.
  • [26] Zhang, L.Y., Jiang, Y.H., Ma, Z., Shanc, S.F., Jia, Y.Z., Fanc, C.Z. & Wang, W.K. (2008). Effect of cooling rate on solidified microstructure and mechanical properties of aluminium-A356 alloy. Journal of Materials Processing Technology. 207, 107.
  • [27] Ignaszak, Z. & et al. (2013). Cellular Automaton Method Applied for Microstructure Prediction of Al-Si Casting Treated by Laser Beam. 4th International Conference on Integrity, Reliability and Failure - IRF'2013, Funchal 23- 27 June 2013, Madeira Portugal.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2bb020ca-533c-4c1e-8dfb-fe4daeb7960c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.