PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of phase transformations in the austenite range for continuous cooling of 38CrSiMo4–2–3 steel

Identyfikatory
Warianty tytułu
PL
Analiza przemian fazowych z zakresu austenitu przy ciągłym chłodzeniu stali 38CrSiMo4–2–3
Języki publikacji
EN
Abstrakty
EN
This article describes the kinetics of phase transformations of undercooled austenite of 38CrSiMo4–2–3 alloy steel. The tested steel is called a model alloy, whose chemical composition represents a group of steels for heat improvement. In the research part, microstructural analysis was used, dilatometric method was used and hardness was measured. For the analysis of phase transformations under continuous cooling, steel samples were austenitized at 880°C, annealed for 20 min, and then cooled at various speeds in the range of 20°C/s÷0.1°C/s. On the developed CCT diagram of 38CrSiMo4–2–3 steel, the onset of ferrite and perlite evolution was observed in the cooling range of 1°C/s and 0.1°C/s. In turn, the “nose” of bainitic transformation occurs for a cooling curve of 10°C/s. The temperature at the beginning of the martensitic transformation Ms was 350°C. The steel was characterized by rather "low" hardenability, because to obtain the martensite itself in its microstructure, the use of cooling at a rate greater than 20°C/s was required.
PL
W artykule opisano kinetykę przemian fazowych przechłodzonego austenitu konstrukcyjnej stali stopowej 38CrSiMo4–2–3. Badana stal jest tzw. stopem modelowym, który składem chemicznym reprezentuje grupę stali do ulepszania cieplnego. Finalnie opracowano wykres CTPc dla stali 38CrSiMo4–2–3.
Rocznik
Strony
128--132
Opis fizyczny
Bibliogr. 17 poz., fig., tab.
Twórcy
  • AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Cracow
Bibliografia
  • [1] Steel and its heat treatment: a Handbook. Swerea IVF, Molndal (2012).
  • [2] Lu Y.: Heat transfer, hardenability and steel phase transformations during gas quenching. Manufacturing Engineering (2016).
  • [3] Singon Kang S., Kim K., Son Y., Lee S.: Application of the quenching and partitioning (Q&P) process to D6AC steel. ISIJ International 56 (11) (2016) 2057÷2061.
  • [4] Maisuradze M. V., Ryzhkov M. A.: Induction surface hardening of 42CrMo4 steel tubes designed for rotary percussive drilling equipment. AIP Conference Proceedings 1785, Mechanics, Resource and Diagnostics of Materials and Structures (2016) 040034-1÷040034-4.
  • [5] Pacyna J.: Stale na wyroby hutnicze. Półwyroby i wyroby płaskie. Tom II. Wyd. Rolls-Rolls Inc., Kraków (2016).
  • [6] García de Andrés C., Caballero F. G., Capdevila C., Álvarez L. F.: Application of dilatometric analysis to the study of solid–solid phase transformations in steels. Materials Characterization 48/1 (2002) 101÷111.
  • [7] Maisuradze M., Ryzhkov M., Kuklina A.: Phase transformations in D6AC steel during continuous cooling. Solid State Phenomena 265 (2017) 712÷716.
  • [8] Lúcio de Fariaa G., Magalhães Ávila de Paulaa J., Fernandes de Limab M. S.: Characterization of phase transformations and microstructural changes in an API 5CT L80 steel grade during Ni alloy laser cladding. Materials Research 21/5 (2018) 1÷9.
  • [9] Kawoluk P., Podolinsky P., Kajzar P., Schindler I., Kawoluk R., Ševcak V., Opela P.: The influence of deformation and austenitization temperature on the kinetics of phase transformations during cooling of high-carbon steel. Arch. Metall. Mater. 63/4 (2018) 1743÷1748.
  • [10] Rożniata E., Dziurka R.: The kinetics of phase transformations of undercooled austenite of 37MnCo6–4 hypoeutectoid steel. Inżynieria Materiałowa 35 (1) (2014) 25÷30.
  • [11] Binczyk F., Przeliorz R., Bzymek J., Kulasa J.: Określenie metodą kalorymetrii skaningowej entalpii przemian fazowych w żeliwie sferoidalnym. Archives of Foundry 6/19 (2006) 31÷36.
  • [12] Rożniata E., Dziurka R.: Analysis of the microstructure of 37MnMo6–3 hypoeutectoid steel. Archives of Materials Science and Engineering 58 (2) (2012) 125÷129.
  • [13] Rożniata E.: The microstructures and energy dispersive spectroscopy analysis of a hypoeutectoid steels with 1% Cr. Archives of Metallurgy and Materials 58 (4) (2013) 1253÷1259.
  • [14] Yudin Yu. V., Maisuradze M. V., Kuklina A. A.: A study of the microstructure of bainite in steel 25G2S2N2MA by the method of atomic force microscopy. Metal Science and Heat Treatment 60/7–8 (2018) 427÷432.
  • [15] Liu X.: Microstructural characterisation of pearlitic and complex phase steels using image analysis methods. Metallurgy and Materials Science School of Engineering, The University of Birmingham (2014).
  • [16] Morri A., Ceschini L., Pellizzari M., Menapace C., Vettore F., Veneri E.: Effect of the austempering process on the microstructure and mechanical properties of 27MnCrB5–2 steel. Arch. Metall. Mater. 62/2 (2017) 643÷651.
  • [17] Abbaszadeh K., Hassan Saghafian K., Kheirandish S.: Effect of bainite morphology on mechanical properties of the mixed bainite-martensite microstructure in D6AC steel. Journal of Materials Science & Technology 28/4 (2012) 336÷342.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2bab696e-bd93-4a0a-8a9e-44b462415a52
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.