PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fully printed organic solar cells : a review of techniques, challenges and their solutions

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The emergence of solar cells on flexible and bendable substrates has made the printing process a ubiquitous tool for the fabrication of these devices. The various printing techniques available now such as inkjet, screen and flexography offer cost- effectiveness, user-friendliness and suitability for mass production. While downscaling the fill factor and efficiency of organic solar cells. A multilayered structure, the combination of different printing techniques avails the variety of thickness and resolution required for each layer in the production of an organic solar cell. In this review article, we discuss the suitability of the inkjet and screen printing processes to produce organic solar cells. We also discuss various challenges involved in the fabrication of organic solar cells using these two techniques and the possible solutions for the same. We also provide an analogy that both processes share. Further, we consider future possibilities of combining these printing technologies to produce organic solar cells to improve device performance.
Rocznik
Strony
298--320
Opis fizyczny
Bibliogr. 131 poz., wykr., rys., fot., tab.
Twórcy
autor
  • Department of Metallurgical Engineering and Materials Science, IIT Bombay, Mumbai, 400076, India
  • Department of chemical engineering, Monash University, Australia
  • IITB-Monash research academy, Mumbai, 400076, India
autor
  • Department of Metallurgical Engineering and Materials Science, IIT Bombay, Mumbai, 400076, India
autor
  • Department of Metallurgical Engineering and Materials Science, IIT Bombay, Mumbai, 400076, India
Bibliografia
  • [1] B. Derby, Inkjet printing of functional and structural materials: fluidproperty requirements, feature stability, and resolution, Annu. Rev. Mater.Res. 40 (2010) 395–414.
  • [2] J.Y. Park, Ge. Gao, J. Jang, D.W. Cho, 3D printed structures for delivery ofbiomolecules and cells: tissue repair and regeneration, J. Mater. Chem. BMater. Biol. Med. 4 (2016) 7521–7539.
  • [3] G. Kaur, R. Adhikari, P. Cass, M. Bown, P. Gunathilake, Electrically conductivepolymers and composites for biomedical applications, RSC Adv. 5 (47)(2015) 37553–37567.
  • [4] R. Sondergaard, M. Hosel, D. Angmo, T.T.L. Olsen, F.C. Krebs, Roll -to-rollfabrication of polymer solar cells, Mater. Today 15 (2012) 36–49.
  • [5] N. Marinova, S. Valero, J.L. Delgado, Organic and perovskite solar cells:working principles, materials and interfaces, J. Colloid Interf. Sci. 488 (2017)373–389.
  • [6] R. Das, K.G. Zadeh, G. Chanson, X. He, Flexible, Printed and OrganicElectronics Forecasts, Player & Opportunities, 2017–2027, Idtech exCambridge, UK, 2016.
  • [7] K. Suganuma, Introduction to printed electronics, Springer Briefs inElectrical and Computer engineering, 2014, 25, ISBN 2191–8120.
  • [8] J.E. Fromm, Numerical calculation of the fluid dynamics of drop on demandjets, IBM J. Res. Dev. 28 (1984) 322–323.
  • [9] N. Reis, C. Ainsley, B. Derby, Inkjet delivery of particle suspensions bypiezoelectric droplet ejectors, J. Appl. Phys. 9 (2005) 094903–094906.
  • [10] D. Jang, D. Kim, J. Moon, Influence of fluid physical properties on inkjetprintability, Langmuir 25 (2009) 2629–2635.
  • [11] A.A. Goghari, S. Chandra, Producing droplets smaller than the nozzlediameter by using a pneumatic drop on demand droplet generator, Exp.Fluids 44 (2008) 105–114.
  • [12] R.D. Deegan, O. Bakajn, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Written,Capillary flow as the cause of ring stains from dried liquid drops, Nature 389(1997) 827–829.
  • [13] H. Hu, R.G. Larson, The Marangoni effect reverses coffee ring depositions, J.Phys. Chem. B 110 (2006) 7090–7094.
  • [14] P.Y. Yunker, Tim still, Suppression of the coffee ring effect byshape-dependent capillary interactions, Nature 476 (2011) 308–311.
  • [15] D. Soltman, V. Subramanian, Inkjet printed line morphologies andtemperature control of the coffee ring effect, Langmuir 24 (2008)2224–2231.
  • [16] L. Cui, J. Zhang, X. Zhang, L. Huang, Z. Wang, Y. Li, H. GAO, S. Zhu, T. Wang, B.Yang, Suppression of the coffee ring effect of hydro soluble polymeradditives, ACS Appl. Mater. Interfaces 4 (2012) 2775–2780.
  • [17] J. Park, J. Moon, Control of colloidal particle deposit patterns with inpicoliter droplets ejected by inkjet printing, Langmuir 22 (2006) 3506–3513.
  • [18] Y. Oh, H.G. Yoon, S.N. Lee, H. Ki Kim, J. Kim, Inkjet printing of TiO2 cosolventink: from uniform ink droplet to TiO2 photo electrode for dye sensitizedsolar cells, J. Electrochem. Soc. 159 (2012) B34–B38.
  • [19] D.Kim S. Jeong, B.K. Park, J. Moon, Direct writing of silver conductivepatterns: improvement of film morphology and conductance by controllingsolvent compositions, Appl. Phys. Lett. 89 (2006) 264101–264103.
  • [20] D.E. Riemer, The theoretical fundamentals of the screen printing process,Microelectron. Int. 6 (1989) 8–17.
  • [21] S. Abbott, How to be a great screen printer, the theory and practice,Macdermid Autotype (2008), ISBN: 978-0-9551220-1-9.
  • [22] F.C. Krebs, Fabrication and processing of polymer solar cells-A review ofprinting and coating techniques, Sol. Energy Mater. Sol. Cells 93 (2009)394–412.
  • [23] S. Mehta, S. Murugesan, B. Prakash, A. Deepak, Novel living ink based onSaccharomyces cerevisae for the screen printing process and its applicabilityin producing braille text dots, Mater Today Commun 15 (2018) 325–332.
  • [24] K. Futera, M. Jakubowska, Printed electronics on flexible and glasssubstrates, Photonics Lett. Pol. 2 (2010) 85–87.
  • [25] K. Schulze, B. Maennig, K. Leo, Organic solar cells on indium tin oxide andaluminium doped zinc oxide anodes, Appl. Phys. Lett. 91 (2007)073521–073523.
  • [26] K.H. Choi, J.A. Jeong, H.K. Kim, Dependence of electrical, optical andstructural properties on the thickness of IZTO thin films grown by linearfacing target sputtering for organic solar cells, Sol. Energy Mat. Sol. C 94(2010) 1822–1830.
  • [27] W.A. Mac Donald, M.K. Looney, D.M. Kerron, R. Eveson, R. Adam, K.Hashimoto, K. Rakos, Latest advances in substrates for flexible electronics, J.Soc. Inf. Disp. 15 (2007) 1075–1083.
  • [28] A. Huebler, B. Trnovec, T. Zillger, M. Ali, N. Wetzold, M. Mingebach, A.wagenfahl, C. Deibel, V. Dyakanov, Printed paper photovoltaic cells, Adv.Energy Mater. 1 (2011) 1018–1022.
  • [29] L. Leonat, M.S. White, E.D. Glowacki, M.C. Scharber, T. Zilliger, J. Ruhling, A.Huebler, N.S. Sariciftci, 4% efficient polymer solar cells in paper substrates, J.Phy. Chem C 118 (2014) 16813–16817.
  • [30] Y. Galagan, D.J.D. Moet, D.C. Hermes, P.W.M. Blom, R. Andriessen, Large areaITO free organic solar cells on steel substrate, Org. Electron. 13 (2012)3310–3314.
  • [31] L. Wong, C.M. Ho, Surface molecular property modifications for(polydimethylsiloxane) PDMS based microfluidic devices, MicrofluidNanofluid 7 (2009) 291–306.
  • [32] V. Zardetto, T.M. Brown, A. Reale, A.D. Carlo, Substrates for flexibleelectronics: a practical investigation on the electrical, film flexibility, optical,temperature and solvent resistance properties, J. Polym. Sci.: Polym. Phys.Ed. 49 (2011) 638–648.
  • [33] Z.Y. Hui, M.Z. Xia, L.H. Li, D.X. Long, Review of flexible and transparent thinfilm transistors based on zinc oxide and related materials, Chin. Phys. B 26(2017) 047307.
  • [34] Martin Weis, Transparent electrodes for flexible organic light emittingdiodes and displays, Disp. Imaging 2 (2015) 49–68.
  • [35] B.W.N.H. Hemasiri, J.K. Kim, J.M. Lee, Fabrication of highly conductivegraphene ITO transparent bi film through CVD and organic additives freesol-gel techniques, Sci. Rep. 7 (17868) (2017) 1–12.
  • [36] M.S. Hwang, B.Y. Jeong, J. Moon, S.K. Chun, J. kim, Inkjet printing of indiumtin oxide (ITO films) for transparent conducting electrodes, Mater. Sci. Eng. B176 (2011) 1128–1131.
  • [37] P. Reddy Matli, R.A. Shakoor, A. Mohamed, A. Mohamed, M. Gupta,Microwave rapid sintering of Al-metal matrix composites: a review on theeffect of reinforcement microstructure and mechanical properties, Met. 6(2016) 143 (19 pages).
  • [38] D. Chen, C. Jiang, H. Sun, B. Feng, X. Lu, J. Weng, J. Wang, Sintering study ofITO using a ZnO doped and microwave hybrid sintering approach, J.A.Ceram. Soc 2 (2014) 57–63.
  • [39] J.A. Jeong, J. Lee, H. Kim, H.K. Kim, S.I. Na, Inkjet printed transparentelectrode using nano-size indium tin oxide particles for organicphotovoltaics, Sol. Energy Mater. Sol. Cells 94 (2010) 1840–1844.
  • [40] J.A. Jeong, H.K. Kim, J. kim, Invisible Ag grid embedded with ITO nanoparticlelayer as a transparent hybrid electrode, Sol. Energy Mater. Sol. Cells 125(2014) 113–119.
  • [41] B. Bessais, N. Mliki, R. Bennaceur, Technological structural andmorphological aspects of screen printed ITO used in ITO/si type structure,Semicond. Sci.Technol 8 (1993) 116–121.
  • [42] B. Bessais, H. Ezzaouia, R. Bennaceur, Electrical behaviour and opticalproperties of screen printed ITO thin films, Semicond. Sci. Technol. 8 (1993)1671–1678.
  • [43] R. Po, C. Carbonera, A. Bernardi, Nadia Camaioni, The role of buffer layers inpolymer solar cells, Energy Environ. Sci. 4 (2011) 285–310.
  • [44] F. Wang, Z. Tan, Y. Li, Solution processable metal oxides/chelates aselectrode buffer layers for efficient and stable polymer solar cells, EnergyEnviron. Sci. 8 (2015) 1059–1091.
  • [45] S. Lattente, Electron and hole transport layers: their use in inverted bulkheterojunction polymer solar cells, Electron 3 (2014) 132–164.
  • [46] E.D. Gomez, Y.L. Loo, Engineering the organic semiconductor electrodeinterface in polymer solar cells, J.Mater.Chem 20 (2010) 6604–6611.
  • [47] S.D. Hoath, W.K. Hsiao, G.D. Martin, S. Jung, S.A. Butler, N.F. Morrison, O.G.Harlen, L.S. Yang, C.D. Bain, I.M. Hutchings, Oscillations of aqueousPEDOT:PSS droplets and the properties of complex fluids indrop-on-demand inkjet printing, J. Non-Newton Fluid 223 (2015) 28–36.
  • [48] A. Singh, S. Mandal, V. Singh, A. Garg, M. Katiyar, Inkjet printed PEDOT:PSSfor organic devices, 6thinternational workshop on physics of semiconductordevices, Proc. SPIE 8549 (2012) 854936.
  • [49] A. Singh, M. Katiyar, Ashish Karg, understanding the formation ofPEDOT:PSS films by inkjet printing for organic solar cell applications, RScAdv.5 (2015) 78677–78685.
  • [50] S.H. Eom, S. Sundaram, P. Uthirakumar, S.C. Yoon, J. Lim, C. Lee, H.K. Lim, J.Lee, S.H. Lee, Polymer solar cells based on inkjet printed PEDOT:PSS layer,Org. Electron. 10 (2009) 536–542.
  • [51] K.X. Steirer, J.J. Berry, M.O. Reese, M.F.A.M. Van Hest, A. Miedaner, M.W.Liberatore, R.T. Collins, D.S. Ginley, Ultrasonically sprayed and inkjet printedthin film electrodes for organic solar cells, Thin Solid Films 517 (2009)2781–2786.
  • [52] S.S. Yoon, D.Y. Khang, Roles of Nonionic surfactant additives in PEDOT:PSSthin films, J. Phys Chem. C 120 (2016) 29525–29532.
  • [53] X. Hu, G. Chen, X. Wang, H. Wang, Tuning thermoelectric performance bynanostructure evolution of a conducting polymer, J. Mater. Chem. A 3 (2015)20896–20902.
  • [54] F.C. Krebs, M. Jorgensen, K. Niorrmann, O. Hagermann, J. Alstrup, T.D.Nielsen, J. Fyenbo, K. Larsen, J. Kristensen, A complete process for productionof flexible large area polymer solar cells entirely using screen printing-firstpublic demonstration, Sol. Energy Mater. Sol. Cells 93 (2009) 422–441.
  • [55] C. Yi, X. Gong, Towards high performance inverted polymer solar cells,Current Opin. Chem. Eng 53 (2012) 5437–5448.
  • [56] Z. Liang, Q. Zhang, L. Ziang, G. CaO, Zinc oxide cathode buffer layers forinverted polymer solar cells, Energ Environ. Sci. 8 (2015) 3442–3476.
  • [57] B. Qui, Z.G. Zuang, Jizheng Wang, Uncovering the role of cathode buffer layerin organic solar cells, Sci. Rep. 5 (7803) (2015) 1–78038.
  • [58] N.A. Jayah, H. Yahaya, M.R. Mahmood, T. Terasako, K. Yasui, A.M. Hashim,High electron mobility and low carrier concentration of hydrothermallygrown ZnO thin films in seeded plane sapphire at low temperature,Nanoscale Res. Lett. 10 (2015) 7.
  • [59] I. Ullah, S.K. Shah, S. Wali, K. Hayat, S.A. Khattak, A. Khan, Enhancedefficiency of organic solar cells using ZnO as an electron transport layer,Mater. Res. Express 4 (2017) 125505.
  • [60] A. Singh, S. Gupta, A. Garg, Inverted polymer bulk heterojunction solar cellswith inkjet printed electron transport and active layers, Org. Electron. 35(2016) 118–127.
  • [61] T.M. Eggenhuisen, Y. Galagan, E.W.C. Coenen, W.P. Voorthuijzen, M.W.L.Slaats, S.A. Kommeren, S. Shanmuganam, M.J.J. Coenen, R. Andriessen, W.A.Groen, Digital fabrication of organic solar cells by inkjet printing using non-halogenated solvents, Sol. Energy Mater. Sol. Cells 134 (2015) 364–372.
  • [62] J.G. Sanchez, V.S. Balderarrama, S.I. Garduno, E. Osorio, A. Viterisi, M.Estrada, J. Ferre-Borrull, J. Pallares, L.F. Marsal, Impact of inkjet printed ZnOelectron transport layer on the characterization of polymer solar cells, RSc.Adv. 8 (2018) 13094–13102.
  • [63] R.A. Zargar, S. Chackrabarti, S. Joseph, M.S. Khan, R. Husain, A.K. Hafiz,Synthesis and characterization of screen printed ZnO films for solar cellapplications, Optik 126 (2015) 4171–4174.
  • [64] B. Ismail, M. Abaab, B. Rezig, Structural and electrical properties of ZnOfilmsprepared by screen printing technique, Thin Solid Films 383 (2001) 92–94.
  • [65] H.M. Zhou, D.Q. Yi, Z.M. Yu, L.R. Xiao, J. Li, Preparation of aluminium dopedzinc oxide films and study of their microstructure,electrical and opticalproperties, Thin Solid Films 515 (2007) 6909–6914.
  • [66] D. Lidzay, D.D.C. Bradley, M.S. Skolnick, T. Virgili, S. Walker, D.M. whittaker,Strong exciton photocouplingin an organic semiconductor microcavity,Nature 395 (1998) 53–55.
  • [67] M. Knupper, Excitons binding energies in organic semiconductors, Appl.Phys.A. 77 (2003) 623–626.
  • [68] A.K. Kleinschmidt, S.E. Root, D.J. Lipomi, poly(3-hexylthiopene)P3HT:fruitfly or outlier in organic solar cell, J. Mater. Chem. A 5 (2017) 11396–11400.
  • [69] V.G. Shah, D.B. Wallace, Low cost solar cell fabrication by drop on demandinkjet printing, Proc.IMAPS 37thannual international symposium inmicroelectronics, Long Beach (2004) 14–18.
  • [70] J. Kim, C. Park, I. Song, M. Lee, H. Kim, H.C. Choi, Unique crystallization offullerenes:fullerene flowers, Sci. Rep. 32205 (2016) 1–8.
  • [71] C.N. Hoth, S.A. Choulis, P. Schilinsky, S.A. Choulis, C.J. Brabec, Highphotovoltaic performance of inkjet printed polymer fullerene blends, Adv.Mater 19 (2007) 3973–3978.
  • [72] C.N. Hoth, P. Schilinsky, S.A. Choulis, C.J. Brabec, Printing highly efficientorganic solar cells, Nanolett. 8 (2008) 2806–2813.
  • [73] P. Schilinsky, U. Asawapirom, U. Scherf, M. Biele, C.J. Brabec, Influence of themolecular weight of (poly(3-hexylthiopene) on the performance of bulkheterojunction solar cells, Chem. Mater. 17 (8) (2005) 2175–2180.
  • [74] Ch. Liu, K. Wing, Xi. Hu, Y. Yang, Ch.-H.O. Hsu, W. Zhang, S. Xiao, X. Gong, Y.CaO, Molecular weight effect on the efficiency of polymer solar cells, ACSAppl. Mater. Interfaces 5 (2013) 12163–12167.
  • [75] A. Lange, M. Wegener, B. Fischer, S. Janietz, A. Wedel, Solar cells with inkjetprinted polymer layers, Energy Procedia 31 (2012) 150–158.
  • [76] A. Lange, W. Schindler, M. Wegener, K. Fostiropoulos, S. Janietz, Inkjetprinted solar cell active layers prepared from chlorine free solvent systems,Energy Mater. Sol. Cells 109 (2013) 104–110.
  • [77] T.M. Eggenhuisen, Y. Galagan, E.W.C. Coenen, W.P. Voorthuijzen, M.W.L.Slaats, S.A. Kommeren, S. Shanmuganam, M.J.J. Coenen, R. Andriessen, W.A.Groen, Digital fabrication of organic solar cells by inkjet printing usingnon-halogenated solvents, Sol. Energy Mater. Sol. Cells 134 (2015) 364–372.
  • [78] S. Jung, A. Sou, K. Banger, D.H. Ko, P.C.Y. Chow, C.R. Mc Neill, H. Sirringhaus,All-inkjet printed, All-air-processed solar cells, Adv. Energy.Mater. 4 (2014)1400432.
  • [79] S.E. Shaheen, R. Radspinner, N. Peyghambarian, G.E. Jabbour, Fabrication ofbulk heterojunction plastic solar cells by screen printing, Appl. Phys. Lett. 79(2001) 2996–2998.
  • [80] J. Sakai, E. Fujinaka, T. Nishomori, N. Ito, J. Adachi, S. Nagano, K. Murakami,High Efficiency Organic Solar Cells by Screen Printing Method, ConferenceRecord of the Thirty First IEEE, Photovoltaic Specialists Conference, 2005,125–128.
  • [81] T. Aeronauts, P. Vanlaeke, J. Poortmans, P.L. Heremans, Polymer Solar Cells;Screen Printing as a Novel Deposition Technique, Proceedings of SPIE Vol5464, Organic Optoelectronics and Photonics, Photonics Europe Strasbourg,France, 2004, 252–260.
  • [82] K. Koynov, A. Bahtiar, T. Ahn, R.M. Cordeiro, H.H. horhold, C. Bubeck,Molecular weight dependence of chain orientation and optical constants ofthin films of the conjugated polymer MEH-PPV, Macromolecules 39 (2006)8692–8698.
  • [83] F.C. Krebs, J. Alstrup, H. Spanggard, K. Larsen, E. Kold, Production of largearea polymer solar cells by industrial silk screen printing, life time,considerations and lamination with polyethylene terephalate, Sol. EnergyMater. Sol. Cells C 83 (2004) 293–300.
  • [84] M. Jorgensen, O. Hagemann, J. Alstrup, F.C. Krebs, Thermoclevable solventsfor printing conjugated polymers, Application in polymer solar cells, Sol.Energy Mater. Sol. Cells 93 (2009) 413–421.
  • [85] A. Khalate, X. Bombois, G. Scorletti, R. Babuska, S. Koekebakker, W.D. Zeeuw,A waveform design method for a piezo inkjet printhead based on Robustfeed forward control, J. Microelectromech. Syst. 21 (2012) 1365–1374.
  • [86] H.Y. Gan, X. Chan, T. Eriksson, B.K. Lok, Y.C. Lam, Reduction of dropletvolume by controlling actuating waveforms in inkjet printing formicropattern formation, J. Micromech. Microeng. 19 (055010) (2009) 1–8.
  • [87] C.F. Liu, Y. Lin, W.Y. Lai, W. Huang, Improved performance of inkjet printedAg source drain electrodes for organic thin film transistors by overcomingthe coffee-ring effects, AIP Adv. 7 (115008) (2017) 1–1150087.
  • [88] M. Ikegawa, H. Azuma, Droplet behaviours on substrates in thin filmformation using inkjet printing, JSME INT Series B 47 (2004) 490–496.
  • [89] Y. HaO, J. GaO, Z. Xu, N. Zhang, J. LuO, X. Liu, Preparation of silvernanoparticles with hyper branched polymers as a stabilizer for inkjetprinting of flexible circuits, New. J. Chem. 43 (2019) 2797–2803.
  • [90] W. Yin, D.H. Lee, J. Choi, C. Park, S.M. Cho, Screen printing of silvernanoparticle suspension for metal inter connects, Korean J. Chem. Eng. 25(6) (2008) 1358–1361.
  • [91] S.G.R. Avuthu, M. Gill, N. Ghalib, M. Sussman, G. Wable, J. Richstein, J. Circuit,An introduction to the process of printed electronics, in: proceedings ofSMTA international, September 25–29, Rosemont, IL, 2016, 246–252.
  • [92] J. Pan, G.L. Tonkay, A. Quintero, Screen printing process design ofexperiments for fine line printing of thick film ceramic substrates, J. ElectronManuf. 9 (1999) 203–213.
  • [93] A. Willfahrt, J. Stephens, G. Hübner, Optimised stencil thickness and ink filmdeposition, Int. Circ. Educ. Inst. Graphic Arts 4 (2011) (2011) 6–17.
  • [94] R. Bennett, R. Lieske, C. Beech, Profiled Squeegee Blade:Rewrites the Rule forAngle of Attack, IPC APEX Expo Conference Proceedings, San Diego,California, 19–21, February, 2013, 2013, 1592–1605.
  • [95] H.-P. Kuo, C.-F. Yang, A.-N. Huang, C.-T. Wu, W.-C. Pan, Preparation of theworking electrode of dye-sensitized solar cells: effects of screen-printingparameters, J. Taiwan Inst. Chem. Eng. 45 (2014) 2340–2345.
  • [96] W. Yin, D.H. Lee, J. Choi, C. Park, S.M. Cho, Screen printing of silvernanoparticle suspension for metal inter connects, Korean J. Chem. Eng. 25(6) (2008) 1358–1361.
  • [97] X. Wang, L. Zhi, K. Mullen, Transparent conductive graphene electrodes fordyesensitized solar cells, Nanolett. 8 (2008) 323–327.
  • [98] N.F. Anglada, J.P. Puigdemont, J. Figueras, M.Z. Iqbal, S. Roth, Flexible,transparent electrodes using carbon nanotubes, Nanoscale Res. Lett. 7(2012) 571.
  • [99] Z. Wu, Z. Chen, X. Du, J.M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J.R.Reynolds, D.B. Tanner, A.F. hebard, A.C. Rinzler, Transparent ConductiveCarbon Nanotube Films Sci. 305 (2004) 1273–1276.
  • [100] M. Vosqueritchian, D.J. Lipomi, Z.A. Bao, Highly conductive and transparentPEDOT:PSS films with a fluorosurfactant for stretchable and flexibletransparent electrodes, Adv. Funct. Mater 22 (2012) 421–428.
  • [101] C. Bao, J. Yang, H. Gao, F. Li, Y. Yao, B. Yang, G. Fu, X. Zhou, T. Yu, Y. Qin, J. Liu,Z. Zou, In Situ fabrication of highly conductive metal nanowires networkswith high transmittance from deep ultraviolet to Near-Infrared, ACS Nano 9(2015) 2502–2509.
  • [102] T. Aeronauts, P. Vanlaeke, W. Geens, J. Poortmans, P. Heremans, S. Borghs, R.Mertens, R. Andriessen, L. Leenders, Printable anodes for flexible organicsolar cell modules, Thin Solid Films 451–452 (2004) 22–25.
  • [103] Y. Galagan, J.E.J.M. Rubingh, R. Andriessen, C.C. Fan, P.W.M. Blom, S.C.Veenstra, J.M. Kroon, ITO free flexible organic solar cells with printedcurrent collecting grids, Sol. Energy Mater. Sol. Cells 95 (2011) 1339–1343.
  • [104] I.B. Ceballos, N. Kehagias, C.M.S. Torres, M.C. Quiles, P.D. Lacharmoise,Embedded inkjet printed silver grids for ITO free organic solar cells withhigh fill factor, Sol. Energy Mater. Sol. Cells 127 (2014) 50–57.
  • [105] J.S. Yu, I. Kim, J.S. Kim, J. Jo, T.T. Larsen-Olsen, R.R. sondergaard, M. Hosel, D.Angmo, M. Jorgensen, F.C. krebs, Silver front electrode grids for ITO free allprinted polymer solar cells with embedded and raised topographies,prepared by thermal imprint, flexographic and inkjet roll to roll process,Nanoscale 4 (2012) 6032–6040.
  • [106] Y. Galagan, R. Andriesse, Organic Photovoltaics: Technologies andManufacturing Technologies, Third generation photovoltaics, intech open,New York, 2012, 8.
  • [107] S.H. Eom, S. Sundaram, S.C. Yoon, J. Lee, S.H. Lee, Nanoscale ZnO buffer layerfor inkjet printed polymer solar cells, J. Nanosci. Nanotechnol. 8 (2008)5113–5117.
  • [108] F. Wang, Z. Tan, Y. Li, Solution processable metal oxides/chelates aselectrode buffer layers for efficient and stable polymer solar cells, EnergyEnviron. Sci. 8 (2015) 1059–1091.
  • [109] H. Zheng, Y. Zheng, N. Liu, N. Ai, Q. Wang, S. Wu, J. Zhou, D. Hu, S. Yu, S. Han,W. Xu, C. LuO, Y. Meng, Z. Jiang, Y. Chen, D. Li, J. Peng, C.O. Yong, All solutionprocessed polymer light emitting diode displays, Nat. Commun. 4 (1971)(2013) 1–6.
  • [110] M. Hosel, R.R. Sondergaard, D. Angmo, F.C. krebs, Comparison of fast roll toroll flexographic, inkjet, flatbed and rotary screen printing of metal backelectrodes for polymer solar cells, Sol. Energy Mater. Sol. Cells l15 (2013)995–1001.
  • [111] J. Kim, N. Durai, T.M. Lee, I. Kim, K.H. Choi, Screen printed top electrode forefficient invented organic solar cells, Mater. Res. Bull. 70 (2015) 412–415.
  • [112] F.C. krebs, H. Spanggard, T. Kjaer, M. Biancardo, J. Alstrup, Large area plasticsolar cell modules, Mater Sci Eng B 138 (2007) 106–111.
  • [113] H. Yakup, S. Sait Eren, O. Teo man, A. Erdem, C. Hasip, S. Huseyin,Manufacturing of Inorganic-Organic Hybrid Solar Cells by Screen PrintingMethod, 6thNanoscience and Nanotechnology Conference, (NanoTRVI)Izmir, Turkey, 2010.
  • [114] B. Zhang, H. Chae, S.M. Cho, Screen printed polymer fullerene bulkheterojunction polymer solar cells, Jpn. J. Appl. Phys. 48 (2009), 020208.
  • [115] T.T. Olsen, R.R. Sondergaard, K. Norman, M. Jorgensen, F.C. Krebs, All printedtransparent electrodes through an electrical switching mechanism: aconvincing alternative to indium tin oxide, silver and vacuum, EnergyEnviron. Sci. 5 (2015) 9467–9471.
  • [116] T.R. Andersen, T.T.L. Olsen, B. Andreasen, A.P.L. Bottiger, J.E.C.M. Helgesen, E.Bundgaard, K. Norrman, J.W. Andreasen, M. Jorgensen, F.C. krebs, Aqueousprocessing of low bandgap polymer solar cells using Roll-to-Roll methods,ACS Nano. 5 (2011) 4188–4196.
  • [117] R. Sondergaard, M. Helgesen, M. Jorgensen, F.C. Krebs, Fabrication ofpolymer solar cells using aqueous processing for all layers including themetal back electrode, Adv. Energy Mater. 1 (2011) 68–71.
  • [118] F.C. Krebs, Polymer solar cell modules prepared using roll-roll-methods:knife -over-edge coating,slot-die coating and screen printing, Sol. EnergyMater. Sol. Cells 93 (2009) 465–475.
  • [119] L.S. Pali, R. Jindal, A. Garg, Screen printed PEDOT:PSS films as transparentelectrode and its appplications in organic solar cells on opaque substrates, J.Mater Sci: Mater Electron. 29 (2018) 11030–11038.
  • [120] T. Aernouts, T. Aleksandrov, C.G.J. Genoe, J. Poortmans, Polymer basedorganic solarcells using inkjet printed active layers, App. Phys. Lett. 92 (1–3)(2008) 033306.
  • [121] A.D.G.D. Mauro, R. Diana, A. Grimaldi, F. Loffredo, P. Morvillo, F. Villani, C.Minarini, Polymer Solar Cells With Inkjet Printed a Doped PEDOT:PSSAnode, Presented at the 6thConference on the Times of Polymers &Composites Held at Ischia Italy, 2012.
  • [122] Y.C. Huang, F.H. Hsu, H.C. Cha, C.M. Chuang, C.S. Tsao, C.Y. Chen, Highperformance ITO-free spray-processed polymer solar cells withincorporating ink-printed grid, Org. Electron. 14 (2013) 2809–2817.
  • [123] M. Neophytou, F. Hermerschmidt, A. Savva, E. Georgiou, S.A. Choulis, Highlyefficient indium tin oxide free organic photovoltaics using inkjet printedsilcer nanoparticle current collecting grids, Appl. Phys. Lett. 101 (2012)193302.
  • [124] E. Georgiou, S.A. Choulis, Felix Hermerschmidt, S.M. Pozov, I.B. Ceballos, C.Christodoulou, G. Schider, S. Kressi, R. Ward, E.J.W.L. Kratochvil, C. Boeffel,Printed copper nanoparticle metal grids for cost effective ITO-free solutionprocessed solar cells, Sol. RRL 2 (2018) 1700192.
  • [125] S.H. Eom, H. Park, S.H. Mujawar, S.C. Yoon, S.S. Kim, S.I. Na, S.J. Kang, D.Khim, D.Y. Kim, S.H. Lee, High efficiency polymer solar cells via sequentialinkjet printing of PEDOT:PSS and P3HT:PCBM with additives, Org. Electron.11 (2010) 1516–1522.
  • [126] Y. Galagan, E.W.C. Coenen, S. Sabik, H.H. Gorter, M. Barink, S.C. Veenstra, J.M.Kroon, R. Andriessen, P.W.M. Blom, Evaluation of inkjet printed currentcollecting grids and busbars for ITO free organic solar cells, Energy Mater.Sol. Cells 104 (2012) 32–38.
  • [127] J. Kim, S.I. Na, H.K. Kim, Inkjet printing of transparent InZnSnO conductingelectrodes from nano-particle ink for printable organic photovoltaics, Sol.Energy Mater. Sol. Cells 98 (2012) 424–432.
  • [128] H.K. Kim, I.K. You, J.B. Koo, S.K. Kim, Organic solar cells fabricated on inkjetprinted tin oxide electrodes, Surf. Coat. Tech. 211 (2012) 33–36.
  • [129] S. Sankaran, K. Glaser, S. Gartner, T. Rodlmeier, K. Sudau, G.H. Sosa, A.Colsmann, Fabrication of polymer solar cells from organic nanoparticledispersions by doctor blading or inkjet printing, Org. Electron. 28 (2016)118–122.
  • [130] T.M. Eggenhuisen, Y. Galagan, A.F.K.V. Biezemans, T.M.W.L. Slaats, W.P.Voorthuijzen, S. Kommeren, S. Shanmugam, J.P. Teunissen, A. Hadipour,W.J.H. Verhees, S.C. Veenstra, M.J.J. Coenen, J. Gilot, R. Andriessen, W.A.Groen, High efficiency fully inkjet printed organic solar cells with freedomof design, J. Mater.Chem. A 3 (2015) 7255–7262.
  • [131] P. Maisch, K.C. Tam, L. Lucera, H.J. Egelhaaf, H. Scheiber, E. Maier, C.J. Brabec,Inkjet printed silver nanowire percolation networks as electrodes for highlyefficient semitransparent organic solar cells, Org. Electron. 38 (2016)139–143.
Uwagi
1. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
2. The authors would like to acknowledge the Ministry of Human Resource Development (MHRD), India for providing funding tocarry out this research, Department of Science and Technology(DST) (project no: DST/TM/SERI/2 × 12/21 (4)), India, IITB-Monash Research Academy. The Authors would like to acknowledge SERB-DST India for providing financial support to one of the authors.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2ba764a6-a946-476d-93f3-1ec0690e52be
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.