PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Purification of Synthetic Gas from Fine Coal Waste Gasification as a Clean Fuel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The presence of CO2 in the syngas is attracting more attention in terms of reducing the greenhouse gas emissions in its utilisation. The aim of this study was to purify syngas from the CO2 content of fine coal gasification. Fine coal is gasified with and without absorption using CaO, which is hydrated to Ca(OH) 2 in the modified updraft gasifier at 450–700 °C. Apart from investigating the CO2 absorption process, the gasification process also evaluates the influence of temperature in terms of its synergy with Ca(OH) 2. The best conditions for the gasification process are achieved at 700 °C. The content of CO2 was proven to be well absorbed, which is characterised by a decrease in the CO2 content and an increase in H2 in syngas. After the absorption process, the H2 content obtained increased from 42.6 mole% to 48.8 mole% of H2 at 700°C. The H2 ratio also increased after absorption to 2.57 from the previous value of 2.23. The highest absorption efficiency of CO2 by Ca(OH) 2 occurred at 700°C at 50.63%. With an increase in temperature in the gasification process with absorption, the CO2 content decreased dramatically from 16.9 mole% to 3.9%. Ca(OH) 2 has good absorption power at CO2 at high temperatures.
Słowa kluczowe
Rocznik
Strony
114--120
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Chemical Engineering Department, Faculty of Engineering, Universitas Sriwijaya, Jl. Raya Palembang-Prabumulih KM 32 Indralaya, Ogan Ilir, Sumatera Selatan 30662, Indonesia
  • Chemical Engineering Department, Faculty of Engineering, Universitas Sriwijaya, Jl. Raya Palembang-Prabumulih KM 32 Indralaya, Ogan Ilir, Sumatera Selatan 30662, Indonesia
  • Chemical Engineering Department, Faculty of Engineering, Universitas Sriwijaya, Jl. Raya Palembang-Prabumulih KM 32 Indralaya, Ogan Ilir, Sumatera Selatan 30662, Indonesia
  • Chemical Engineering Department, Faculty of Engineering, Universitas Sriwijaya, Jl. Raya Palembang-Prabumulih KM 32 Indralaya, Ogan Ilir, Sumatera Selatan 30662, Indonesia
  • Doctoral Program of Environmental Science, Graduate School, Universitas Sriwijaya, Jl. Padang Selasa No.524, Palembang 30139, South Sumatra, Indonesia
Bibliografia
  • 1. Adiansyah J.S., Haque N., Rosano M., and Biswas W. 2017. Application of a life cycle assessment to compare environmental performance in coal mine tailings management. Journal of Environmental Management, 199, 181–91. https://doi.org/10.1016/j.jenvman.2017.05.050.
  • 2. Aprianti N., Faizal M., Said M., and Nasir S. 2020. Valorization of Palm Empty Fruit Bunch Waste for Syngas Production through Gasification. Journal of Ecological Engineering, 21(7), 17–26. https://doi.org/10.12911/22998993/125461.
  • 3. Aprianti N., Faizal M., Said M., and Nasir S. 2021. Catalytic gasification of oil palm empty fruit bunch by using Indonesian bentonite as the catalyst. Journal of Applied Engineering Science, 1–10. https://doi.org/10.5937/jaes0–28781.
  • 4. Chen S., Zhao Z., Soomro A., Ma S., Wu M., Sun Z, and Xiang W. 2020. Hydrogen-rich syngas production via sorption-enhanced steam gasification of sewage sludge. Biomass and Bioenergy, 138, 105607. https://doi.org/10.1016/j.biombioe.2020.105607.
  • 5. Chen W.H., and Chen C.Y. 2020. Water gas shift reaction for hydrogen production and carbon dioxide capture: A review. Applied Energy, 258, 114078. https://doi.org/10.1016/j.apenergy.2019.114078.
  • 6. Chen Z, Dun Q., Shi Y., Lai D., Zhou Y., Gao S., and Xu G. 2017. High quality syngas production from catalytic coal gasification using disposable Ca(OH)2 catalyst. Chemical Engineering Journal, 316, 842–849. https://doi.org/10.1016/j.cej.2017.02.025.
  • 7. Dou B., Wang K., Jiang B., Song Y., Zhang C., Chen H., and Xu Y. 2016. Fluidized-bed gasification combined continuous sorption-enhanced steam reforming system to continuous hydrogen production from waste plastic. International Journal of Hydrogen Energy, 41(6), 3803–3810. https://doi.org/10.1016/j.ijhydene.2015.12.197.
  • 8. Ghaemi A., and Behroozi A.H. 2020. Comparison of hydroxide-based adsorbents of Mg(OH)2 and Ca(OH)2 for CO2 captureUtilization of response surface methodology, kinetic, and isotherm modeling. Greenhouse Gases Science and Technology, 10(5), 948–964. https://doi.org/10.1002/ghg.2015.
  • 9. Hafner S., Schmid M., and Scheffknecht G. 2021. Parametric study on the adjustability of the syngas composition by sorption-enhanced gasification in a dual-fluidized bed pilot plant. Energies, 14(2), 399. https://doi.org/10.3390/en14020399.
  • 10. Hwang I.H., Kobayashi J., and Kawamoto K. 2014. Characterization of products obtained from pyrolysis and steam gasification of wood waste, RDF, and RPF. Waste Management, 34(2), 402–410. https://doi.org/10.1016/j.wasman.2013.10.009.
  • 11. Jiang L., Hu S., Syed-Hassan S.S.A., Xu K., Shuai C., Wang Y., Su S., and Xiang J. 2018. Hydrogen-rich gas production from steam gasification of lignite integrated with CO2 capture using dual calciumbased catalysts: An experimental and catalytic kinetic study. Energy and Fuels, 32(2), 1265–1275. https://doi.org/10.1021/acs.energyfuels.7b03213.
  • 12. Kim, J.Y., Jo Y.M., and Kim S.B. 2020. De-dusting in biomass gasification process using a coated bag filter. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399–020–00990-w.
  • 13. Kumar S., Wang Z., Kang Z., Xia J., Whiddon R., He Y., Gul-e-Rana J., Bairq Z.A.S., and Cen K. 2019. Influence of temperature and Ca(OH)2 on releasing tar and coal gas during lignite coal pyrolysis and char gasification. Chinese Journal of Chemical Engineering, 27(11), 2788–2798. https://doi.org/10.1016/j.cjche.2019.05.013.
  • 14. Kumari G, and Vairakannu P. 2018. CO2-O2 dry reforming based underground coal gasification using low and high ash Indian coals. Fuel, 216, 301–312. https://doi.org/10.1016/j.fuel.2017.11.117.
  • 15. Lazzarotto, I.P., Ferreira S.D., Junges J., Bassanesi G.R., Manera C., Perondi D., and Godinho M. 2020. The role of CaO in the steam gasification of plastic wastes recovered from the municipal solid waste in a fluidized bed reactor. Process Safety and Environmental Protection, 140, 60–67. https://doi.org/10.1016/j.psep.2020.04.009.
  • 16. Li B., Yang H., Wei L., Shao J., Wang X., and Chen H. 2017. Absorption-enhanced steam gasification of biomass for hydrogen production: Effects of Calcium-based absorbents and NiO-based catalysts on corn stalk pyrolysis-gasification. International Journal of Hydrogen Energy, 42(9), 5840–5848. https://doi.org/10.1016/j.ijhydene.2016.12.031.
  • 17. Li Z., Wang Y., Yao H., and Lin S. 2015. Novel CO2 sorbent: Ca(OH)2 with high strength. Fuel Processing Technology, 131, 437–442. https://doi.org/10.1016/j.fuproc.2014.12.023.
  • 18. Mansur F.Z., Faizal C.K.M., Monir M.U., Samad N.A.F.A., Atnaw S.M., and Sulaiman S.A. 2020. Co-gasification between coal/sawdust and coal/ wood pellet: A parametric study using response surface methodology. International Journal of Hydrogen Energy, 45(32), 15963–15976. https://doi.org/10.1016/j.ijhydene.2020.04.029.
  • 19. Mostafavi E., Mahinpey N., Rahman M., Sedghkerdar M.H., and Gupta R. 2016. High-purity hydrogen production from ash-free coal by catalytic steam gasification integrated with dry-sorption CO2 capture. Fuel, 178, 272–282. https://doi.org/10.1016/j.fuel.2016.03.026.
  • 20. Shuai C., Hu S., He L., Xiang J., Su S., Sun L., Jiang L., Wang Y., Chen Q., Liu C., Chi H. 2015. Performance of CaO for phenol steam reforming and water-gas shift reaction impacted by carbonation process. International Journal of Hydrogen Energy, 40(39), 13314–13322. https://doi.org/10.1016/j.ijhydene.2015.07.167.
  • 21. Soleimanisalim A.H., Sedghkerdar M.H., Karami D., and Mahinpey N. 2017. Effects of second metal oxides on zirconia-stabilized Ca-based sorbent for sorption/catalyst integrated gasification. Journal of Environmental Chemical Engineering, 5(1), 1281–1288. https://doi.org/10.1016/j.jece.2017.01.047.
  • 22. Soleimanisalim A.H., Sedghkerdar M.H., Karami D., and Mahinpey N. 2016. The effects of refractory zirconium-based ceramic dopants on the stability performance of synthetic Ca-based sorbents prepared by co-precipitation method in cyclic CO2 capture operations. Journal of Natural Gas Science and Engineering, 36, 1056–1061. https://doi.org/10.1016/j.jngse.2016.09.010.
  • 23. Soomro A., Chen S., Ma S., Xu C., Sun Z., and Xiang W. 2018. Elucidation of syngas composition from catalytic steam gasification of lignin, cellulose, actual and simulated biomasses. Biomass and Bioenergy, 115, 210–222. https://doi.org/10.1016/j.biombioe.2018.05.002.
  • 24. Sun H., and Wu C. 2019. Autothermal CaO looping biomass gasification for renewable syngas production. Environmental Science and Technology, 53(15), 9298–9305. https://doi.org/10.1021/acs.est.9b01527.
  • 25. Vega M.F., Díaz-Faes E., and Barriocanal C. 2021. Influence of feedwater PH on the CO2 reactivity of hydrochars. Co-carbonisation with a bituminous coal. Renewable Energy, 170, 824–831. https://doi.org/10.1016/j.renene.2021.01.100.
  • 26. Wu H., Xu M., Li Y., Wu J., Shen J., and Liao H. 2020. Experimental research on the process of compression and purification of CO2 in oxy-fuel combustion. Applied Energy, 259, 114123. https://doi.org/10.1016/j.apenergy.2019.114123.
  • 27. Xiong S., He J., Yang Z., Guo M., Yan Y., and Ran J. 2020. Thermodynamic analysis of CaO enhanced steam gasification process of food waste with high moisture and low moisture. Energy, 194, 116831. https://doi.org/10.1016/j.energy.2019.116831.
  • 28. Yan Y., Qi Y., Marshall M., Jackson W.R., Stanger A., Tran Q. A., Stanger R., and Chaffee A.L. 2021. Characterisation of coal density fractions separated from Victorian brown coal by reflux classification. Fuel, 292, 120385. https://doi.org/10.1016/j.fuel.2021.120385.
  • 29. Yanase I., Sasaki T., and Kobayashi H. 2017. Effect of orientation of CaO plate-like particle on CO2 adsorption property. Powder Technology, 315, 15–21. https://doi.org/10.1016/j.powtec.2017.02.059.
  • 30. Zhang H., Nie W., Liu Y., Wang H., Jin H., and Bao Q. 2018. Synthesis and performance measurement of environment-friendly solidified dust suppressant for open pit coalmine. Journal of Applied Polymer Science, 135(29), 46505. https://doi.org/10.1002/app.46505.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2ba33636-5d43-47d9-956f-5781150de84d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.