Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Let {Xt} be a Lévy process in Rd, d ≥ 2, with infinite Lévy measure. If {Xt} has no Gaussian component, then the process does not hit the boundary of Lipschitz domain S ⊂ Rd at the first exit time of S under mild conditions on {Xt}. The conditions are met, e.g., if {Xt} is rotation invariant.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
383--390
Opis fizyczny
Bibliogr. 6 poz.
Twórcy
autor
- Institute of Mathematics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
- [1] R. M. Blumenthal and R. K. Getoor, Markov' Processes and Potential Theory, Pure Appl. Math., Academic Press Inc., New York 1968.
- [2] K. Bogdan, The boundary Harnack principle for the fractional Laplacian, Studia Math. 123 (1997), pp. 43-80. -
- [3] N. Ikeda and S. Watanabe, On some relations between the harmonic measure and the Lévy measure for a certain class of Markov processes, J. Math. Kyoto Univ. 2-1 (1962), pp. 79-95.
- [4] N. Ikeda and S. Watanabe, Stochastic differential equations and diffusion processes, North-Holland Publishing Company, Amsterdam-Oxford-New York 1981.
- [5] P. W. Millar, Exit properties of stochastic processes with stationary independent increments, Trans. Amer. Math. Soc. 178 (1973), pp. 459-479.
- [6] P. W. Millar, First passage distributions of processes with independent increments, Ann. Probab. 3, No. 2 (1975), pp. 215-233.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2ba24bc8-3f29-4e04-9a1b-5fa1934aee29