PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A new optical frequency transfer method via fibre based on active phase noise compensation with single acousto-optic modulator

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we propose and experimentally demonstrate a new method for optical frequency transfer over fibre. Instead of dual acousto-optic modulators (AOMs) as adopted in the traditional fibre phase noise compensation setup, here an active fibre phase noise compensation scheme with a single acousto-optic modulator (AOM) is used. The configuration simplifies the equipment of the user end while maintaining a high-performance optical frequency transfer stability. We demonstrate an actively stabilized coherent transfer at an optical frequency of 193.55THz over 10-km spooled fibre, obtaining a relative frequency stability (Allan deviation) of 3.84 x 10-16/1 s and 4.08 x 10-18/104 s, which is improved by about 2~3 orders of magnitude in comparison with the one without any phase noise compensation that achieves a relative frequency stability of 1.81 x 10-14/1 s and 2.48 x 10-15/104 s.
Rocznik
Strony
115--124
Opis fizyczny
Bibliogr. 24 poz., rys., wykr., wzory
Twórcy
autor
  • China Academy of Space Technology (Xi’an), Xi’an, Shaanxi, 710000, China
autor
  • China Academy of Space Technology (Xi’an), Xi’an, Shaanxi, 710000, China
autor
  • China Academy of Space Technology (Xi’an), Xi’an, Shaanxi, 710000, China
autor
  • China Academy of Space Technology (Xi’an), Xi’an, Shaanxi, 710000, China
autor
  • China Academy of Space Technology (Xi’an), Xi’an, Shaanxi, 710000, China
Bibliografia
  • [1] Tu, R., Zhang, P., Zhang, R., et al.(2018). Modeling and assessment of precise time transfer by using BeiDou navigation satellite system triple-frequency signals. Sensors, 18(4), 1017.
  • [2] Jiang, Z., Lewandowski, W. (2012). Use of GLONASS for UTC time transfer. Metrologia, 49, 57-61.
  • [3] Hinkleyn, Sherman, J.A., Phillips, N.B., et al. (2013). An atomic clock with 10-18 instability. Science, 341(6151), 1215–1218.
  • [4] Bloom, B.J., Nicholson, T.L., Williams, J.R., et al. (2014). An optical lattice clock with accuracy and stability at the 10-18 level. Nature, 506(7486), 71–75.
  • [5] Tao, L., Jie, L., Xue, D., et al. (2016). Research on fiber-based time and frequency transfer. Journal of Time and Frequency, 39(3), 207-215.
  • [6] Lombardi, Michael, A. (2017). A historical review of us contributions to the atomic redefinition of the SI second in 1967. Journal of Research of the National Institute of Standards and Technology,122(29), 1-17.
  • [7] Fritz, R. (2015). Towards a redefinition of the second based on optical atomic clocks. Comptes Rendus Physique, 16(5), 506-515.
  • [8] Lin, H.T., Huang, Y.J., Tseng W.H., et al. (2012). Recent development and utilization of two-way satellite time and frequency transfer. Journal of Metrology Society of India, 27(1), 13-22.
  • [9] Bauch, A., Achkar, J., Bize, S., et al. (2006). Comparison between frequency standards in Europe and the USA at the10-15 uncertainty level. Metrologia, 43, 109-120.
  • [10] Fujieda, M., Takiguchi, H., Achkar, J. (2016). Carrier-phase two-way satellite frequency transfer between LNE-SYRTE and PTB, 30th European Frequency and Time Forum (EFTF), 255-259.
  • [11] Lopez, O., Haboucha, A., Chanteau, B., et al. (2012). Ultra-stable long distance optical frequency distribution using the Internet fiber network. Optics Express, 20(21), 23518-23526.
  • [12] Chiodo, N., Quintin, N., Stefani, F., et al. (2015). Cascaded optical fiber link using the internet network for remote clocks comparison. Optics Express, 23(26), 33927-33937.
  • [13] Droste, S., Ozimek, F., Udem, T.H., et al. (2013). Optical-frequency transfer over a single-span 1840 km fiber link. Phys. Rev. Lett., 111(11), 110801.
  • [14] Krehlik, P., Schnatz, H., Śliwczyński, Ł. (2017). A hybrid solution for simultaneous transfer of ultra-stable optical frequency, RF frequency, and UTC time-tags over optical fiber. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 64(12), 1884-1890.
  • [15] Lipiński, M., Krehlik, P., Śliwczyński, Ł., et al. (2016). Testing time and frequency fiber-optic link transfer by hardware emulation of acoustic-band optical noise. Metrol. Meas. Syst., 23(2), 309-316.
  • [16] Xue, D., Jie, L., Dong-Dong, J., et al. (2016). Coherent transfer of optical frequency over 112 km within stability at the10-20 level. Chinese Physics Letters, 33(11), 114202.
  • [17] Qi, Z., Xue, D., Qun, C., et al. (2017). Ultra-stable Optical frequency signal transfer in 210 km urban communication link. Acta Optica Sinica, 37(7), 0706004.
  • [18] Ma, C., Wu, L., Jiang, Y., et al. (2015). Coherence transfer of subhertz-linewidth laser light via an 82 km fiber link. Applied Physics Letters, 107, 261109.
  • [19] Ma, C.Q., Wu, L.F., Jiang, Y.Y., et al. (2015). Optical coherence transfer over 50-km spooled fiber with frequency instability of 2 x 10-17 at 1 s. Chin Phys B, 24(8), 084209.
  • [20] Jie, L., Jing, G., Guan-Jun, X., et al. (2015). Study of optical frequency transfer via fiber. Acta Phys. Sin., 64(12), 120602.
  • [21] Kim, J., Schnatz, H., Wu, D.S., et al. (2015). Optical injection locking-based amplification in phase-coherent transfer of optical Frequencies. Optics Letters, 40(18), 4198-4201.
  • [22] Calonico, D., Bertacco, E.K., Calosso, C.E., et al.(2014). High-accuracy coherent optical frequency transfer over a doubled 642 km fiber link. Applied Physics B, 11(73), 979-986.
  • [23] Newbury, N.R., Williams, P.A., Swann, W.C. (2007). Coherent transfer of an optical carrier over 251 km. Optics Letters, 32(21), 3056-3058.
  • [24] Schediwy, S.W., Gozzard, D., Baldwin, K.G.H., et al. (2013). High-precision optical-frequency dissemination on branching optical-fiber networks. Optics Letters, 38(15), 2893-2896.
Uwagi
EN
1. The work was supported by the National Science Foundation of China (Grant Nos. 11803023, 61627817). The authors would like to thank Dr. Gao Chao from Synchronization Technology Ltd of Chengdu in China.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2b9e7c32-aab5-440d-acc7-3de7ef105dd5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.