PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamic crushing behavior of closed-cell aluminum foams based on different space-filling unit cells

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Closed-cell metal foams are cellular solids that show unique properties such as high strength to weight ratio, high energy absorption capacity, and low thermal conductivity. Due to being computation and cost effective, modeling the behavior of closed-cell foams using regular unit cells has attracted a lot of attention in this regard. Recent developments in additive manufacturing techniques which have made the production of rationally designed porous structures feasible has also contributed to recent increasing interest in studying the mechanical behavior of regular lattice structures. In this study, five different topologies namely Kelvin, Weaire–Phelan, rhombicuboctahedron, octahedral, and truncated cube are considered for constructing lattice structures. The effects of foam density and impact velocity on the stress–strain curves, first peak stress, and energy absorption capacity are investigated. The results showed that unit cell topology has a very significant effect on the stiffness, first peak stress, failure mode, and energy absorption capacity. Among all the unit cell types, the Kelvin unit cell demonstrated the most similar behavior to experimental test results. The Weaire–Phelan unit cell, while showing promising results in low and medium densities, demonstrated unstable behavior at high impact velocity. The lattice structures with high fractions of vertical walls (truncated cube and rhombicuboctahedron) showed higher stiffness and first peak stress values as compared to lattice structures with high ratio of oblique walls (Weaire–Phelan and Kelvin). However, as for the energy absorption capacity, other factors were important. The lattice structures with high cell wall surface area had higher energy absorption capacities as compared to lattice structures with low surface area. The results of this study are not only beneficial in determining the proper unit cell type in numerical modeling of dynamic behavior of closed-cell foams, but they are also advantageous in studying the dynamic behavior of additively manufactured lattice structures with different topologies.
Rocznik
Strony
231--245
Opis fizyczny
Bibliogr. 41 poz., fot., rys., wykr.
Twórcy
autor
  • Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran, Hafez Ave, 1591634311
autor
  • Department of Aerospace Structures and Materials, Faculty of Aerospace Engineering, Delft University of Technology (TU Delft), Kluyverweg 1, 2629 HS Delft, The Netherlands
autor
  • Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran, Hafez Ave, 1591634311
Bibliografia
  • [1] Ashby M, Evans A, Fleck N, Gibson L, Hutchinson J, Wadley H. Metal foams: a design guide. Mater Des. 2002;23:119.
  • [2] Banhart J. Manufacture, characterisation and application of cellular metals and metal foams. Prog Mater Sci. 2001;46(6):559–632.
  • [3] Evans AG, Hutchinson JW, Fleck NA, Ashby MF, Wadley HNG. The topological design of multifunctional cellular metals. Prog Mater Sci. 2001;46(3):309–27.
  • [4] Peroni M, Solomos G, Pizzinato V. Impact behaviour testing of aluminium foam. Int J Impact Eng. 2013;53:74–83.
  • [5] Singh R, Lee PD, Lindley TC, Kohlhauser C, Hellmich C, Bram M, Imwinkelried T, Dashwood RJ. Characterization of the deformation behavior of intermediate porosity interconnected Ti foams using micro-computed tomography and direct finite element modeling. Acta Biomater. 2010;6(6):2342–51.
  • [6] Torkestani A, Sadighi M, Hedayati R. Effect of material type, stacking sequence and impact location on the pedestrian head injury in collisions. Thin Walled Struct. 2015;97:130–9.
  • [7] Li Q, Maharaj R, Reid S. Penetration resistance of aluminium foam. Int J Veh Des. 2005;37:175–84.
  • [8] Ruan D, Lu G, Wang B, Yu TX. In-plane dynamic crushing of honeycombs-a finite element study. Int J Impact Eng. 2003;28(2):161–82.
  • [9] Silva MJ, Hayes WC, Gibson LJ. The effects of non-periodic microstructure on the elastic properties of two-dimensional cellular solids. Int J Mech Sci. 1995;37(11):1161–77.
  • [10] Wang Z, Ma H, Zhao L, Yang G. Studies on the dynamic compressive properties of open-cell aluminum alloy foams. Scripta Mater. 2006;54(1):83–7.
  • [11] Wang Z, Shen J, Lu G, Zhao L. Compressive behavior of closed-cell aluminum alloy foams at medium strain rates. Mater Sci Eng A. 2011;528(6):2326–30.
  • [12] Hedayati R, Hosseini-Toudeshky H, Sadighi M, Aghdam M, Zadpoor A. Multiscale modeling of fatigue crack propagation in additively manufactured porous biomaterials. Int J Fatigue. 2018;113: 416–27.
  • [13] Hedayati R, Rubio-Carpio A, Luesutthiviboon S, Ragni D, Avallone F, Casalino D, Zwaag S. Role of polymeric coating on metallic foams to control the aeroacoustic noise reduction of airfoils with permeable trailing edges. Materials. 2019;12:1087.
  • [14] Gibson LJ, Ashby MF. Cellular solids: structure and properties. Cambridge solid state science series. 2nd ed. Cambridge: Cambridge University Press; 1997.
  • [15] Brakke KA. The surface evolver. Exp Math. 1992;1(2):141–65.
  • [16] Sir Thomson W. On the division of space with minimum partitional area. Acta Math. 1887;11(1):121–34.
  • [17] Weaire D, Phelan R. A counter-example to Kelvin’s conjecture on minimal surfaces. Philos Mag Lett. 1994;69(2):107–10.
  • [18] Grenestedt JL, Tanaka K. Influence of cell shape variations on elastic stiffness of closed cell cellular solids. Scripta Mater. 1998;40(1):71–7.
  • [19] Grenestedt JL, Bassinet F. Influence of cell wall thickness variations on elastic stiffness of closed-cell cellular solids. Int J Mech Sci. 2000;42(7):1327–38.
  • [20] Meguid S, Cheon S, Elabbasi N. FE modeling of deformation localization in metallic foams. Finite Elem Anal Des. 2002;38:631–43.
  • [21] Czekanski A, Attia M, Meguid S, Elbestawi M. On the use of a new cell to model geometric asymmetry of metallic foams. Finite Elem Anal Des. 2005;41:1327–40.
  • [22] Czekanski A, Elbestawi M, Meguid S. On the FE modeling of closed-cell aluminum foam. Int J Mech Mater Des. 2005;2:23–34.
  • [23] Kim A, Tunvir K, Jeong GD, Cheon SS. A multi-cell FE-model for compressive behaviour analysis of heterogeneous Al-alloy foam. Model Simul Mater Sci Eng. 2006;14:933–45.
  • [24] Daxner T, Bitsche RD, Böhm HJ. Micromechanical models of metallic sponges with hollow struts. Mater Sci Forum. 2007;539–543:1857–62.
  • [25] Nammi SK, Myler P, Edwards G. Finite element analysis of closed-cell aluminium foam under quasi-static loading. Mater Des. 2010;31(2):712–22.
  • [26] Hedayati R, Sadighi M. A micromechanical approach to numerical modeling of yielding of open-cell porous structures under compressive loads. J Theor Appl Mech. 2016;54:769.
  • [27] Mohammadi K, Movahhedy MR, Shishkovsky I, Hedayati R. Hybrid anisotropic pentamode mechanical metamaterial produced by additive manufacturing technique. Appl Phys Lett. 2020;117(6):061901.
  • [28] Ghavidelnia N, Bodaghi M, Hedayati R. Femur auxetic metaimplants with tuned micromotion distribution. Materials. 2021;11(3):034057.
  • [29] Aldoshan A, Khanna S. Effect of relative density on the dynamic compressive behavior of carbon nanotube reinforced aluminum foam. Mater Sci Eng A. 2017;689:17–24.
  • [30] Dass Goel M, Matsagar VA, Gupta AK, Marburg S. Strain rate sensitivity of closed cell aluminium fly ash foam. Trans Nonferr Met Soc China. 2013;23(4):1080–9.
  • [31] Giorgi M, Carofalo A, Dattoma V, Nobile R, Palano F. Aluminium foam structural modelling. Comput Struct. 2010;88:25–35.
  • [32] Han M, Cho J. Impact damage behavior of sandwich composite with aluminum foam core. Trans Nonferr Met Soc China. 2014;24:42–6.
  • [33] Hasan MDA. An improved model for Fe modeling and simulation of closed cell Al-alloy foams. Adv Mater Sci Eng. 2010; 567390: 1–12.
  • [34] Kadkhodapour J, Raeisi S. Micro–macro investigation of deformation and failure in closed-cell aluminum foams. Comput Mater Sci. 2014;83:137–48.
  • [35] Liu C, Zhang Y. Modelling mechanical behavior of aluminium foam under compressive loading using representative volume element method. In: 5th European conference on computational mechanics, Barcelona, Spain, July, pp. 20–5. 2013.
  • [36] Wang Y, Zhai X, Yan J, Ying W, Wang W. Experimental, numerical and analytical studies on the aluminum foam filled energy absorption connectors under impact loading. Thin Walled Struct. 2018;131:566–76.
  • [37] Epasto G, Distefano F, Gu L, Mozafari H, Linul E. Design and optimization of metallic foam shell protective device against f lying ballast impact damage in railway axles. Mater Des. 2020;196:109120.
  • [38] Han Z, Li C, Deng Y, Liu J. The analysis of anti-collision performance of the fender with offshore wind turbine tripod impacted by ship and the coefficient of restitution. Ocean Eng. 2019;194:106614.
  • [39] Hedayati R, Jedari Salami S, Li Y, Sadighi M, Zadpoor AA. Semianalytical geometry-property relationships for some generalized classes of pentamodelike additively manufactured mechanical metamaterials. Phys Rev Appl. 2019;11(3):034057.
  • [40] Hedayati R, Sadighi M, Mohammadi-Aghdam M, Hosseini-Toudeshky H. Comparison of elastic properties of open-cell metallic biomaterials with different unit cell types. J Biomed Mater Res B Appl Biomater. 2018;106(1):386–98.
  • [41] Su XY, Yu TX, Reid SR. Inertia-sensitive impact energy-absorbing structures part II: effect of strain rate. Int J Impact Eng. 1995;16(4):673–89.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2b9e1681-345d-4aa2-851b-56dce622e930
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.