PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Shot Peening Parameters on Surface Properties and Corrosion Resistance of 316L Stainless Steel

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present work deals with the enhancement of the surface characteristics of stainless steel 316L as a result of shot peening treatment using ceramic balls. In accordance with our own research and information available in literature, as a result of shot peening process, the shot balls can penetrate to the surface layer (permanently depositing) and modify the mechanical performance and the corrosion resistance in the products being treated in this way. Shot peening leads to a significant change to the surface hardness and topography, and consequently, to the change in corrosion behaviour dependent on the choice of processing parameters. Therefore, in this paper, steel samples were treated using two variable parameters of peening pressure (0.3 and 0.4 MPa) and peening time (30 and 60s). In the research, the reference surface were the samples subjected to mechanical polishing. The surface morphology of the samples was investigated by scanning electron microscopy (SEM). The potentiodynamic polarization tests were performed with 1 mV/s scan rate in 0.9% NalCl solution. The improved corrosion resistance (lowest current density Icorr=0.35µA/cm2 and highest corrosion potential Ecorr=-0.164V) was obtained for specimens with longer time (60s) and higher pressure of shot peening treatment (0.4MPa). Greater changes in surface roughness were observed with an increase in peening pressure than with an increase in the processing time. The treatment of the surface with ceramic shots results in an increase in the hardness of the treated surface by more than 110% (for sample 316L/0.4/60) compared to the reference surface. Moreover, an increase in average hardness values was recorded for all surfaces after shot peening (by more than 42% relative to reference samples).
Twórcy
  • Department of Materials Engineering, Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, Lublin, 20–618 Lublin, Poland
  • Mechanical Science Institute, Vilnius Gediminas Technical University, J. Basanavičiaus g. 28, LT-03224 Vilnius, Lithuania
  • Turkish Naval Academy, National Defence University, Tuzla 34942, Istanbul, Turkey
  • Faculty of Transport and Computer Science, WSEI University in Lublin, ul. Projektowa 4, 20-209 Lublin, Poland
Bibliografia
  • 1. Ahmed A.A., Mhaede M., Basha M., Wollmann M., Wagner L. The effect of shot peening parameters and hydroxyapatite coating on surface proper- ties and corrosion behavior of medical grade AISI 316L stainless steel. Surface & Coatings Technology. 2015, 280, 347–358. http://doi. org/10.1016/j.surfcoat.2015.09.026
  • 2. Walczak M. Surface characteristics and wear resistance of 316L stainless steel after different shot peening parameters. Advances in Science and Technology Research Journal. 2023, 17, 124–132. https://doi.org/10.12913/22998624/165800
  • 3. Azar V. Hashemi B., Yazdi M.R. The effect of shot peening on fatigue and corrosion behavior of 316L stainless steel in Ringer’s solution. Surface & Coatings Technology. 2010, 204, 3546–3551. https://doi.org/10.1016/j.surfcoat.2010.04.015
  • 4. Chen X., Li Y., Zhu Y., Bai Y., Yang B. Improved corrosion resistance of 316LN stainless steel performed by rotationally accelerated shot peening. Applied Surface Science. 2019, 481, 1305–1312. https://doi.org/10.1016/j.apsusc.2019.03.256
  • 5. Decker Ž., Rudzinskas V., Drozd K., Caban J., Tretjakovas J., Nieoczym A., Matijošius J. Analysis of the Vehicle Chassis Axle Fractures. Materials. 2023, 16(2), 806. https://doi.org/10.3390/ma16020806
  • 6. Villochaise P., Mendez J., in: Sudarshan T.S., Jeandin M. (Eds.), Surface Modifications Technologies, IV, The Minerals, Metals and Materials Society, Warrendale, 1991, p. 335
  • 7. Kłonica M. Analysis of the effect of selected factors on the strength of adhesive joints. IOP Conference Series: Materials Science and Engineering, 10th International Conference Machine and Industrial Design in Mechanical Engineering. August, 2018, 393, 012041. https:// dx.doi.org/10.1088/1757-899X/393/1/012041
  • 8. Jażdżewska M., Kwidzińska D.B., Seyda W., Fydrych D., Zieliński A. Mechanical Properties and Residual Stress Measurements of Grade IV Titanium and Ti-6Al-4V and Ti-13Nb-13Zr Titanium Alloys after Laser Treatment. Materials. 2021, 14(21), 6316. https://doi.org/10.3390/ma14216316
  • 9. Żebrowski R., Walczak M. The effect of shot peening on the corrosion behaviour of Ti-6Al-4V alloy made by DMLS. Advances in Materials Science. 2018, 18(3), 43–54. https://doi.org/10.1515/ adms-2017–0040
  • 10. Sun Y., Bailey R., Moroz A. Surface finish and properties enhancement of selective laser melted 316L stainless steel by surface mechanical attrition treatment, Surface and Coatings Technology. 2019, 378, 124993. https://doi.org/10.1016/j. surfcoat.2019.124993
  • 11. Vinoth Jebaraj A., Sugavaneswaran, M. Influence of shot peening on residual stress distribution and corrosion resistance of additive manufactured stainless steel AISI 316L. Trans Indian Inst Met. 2019, 72, 1651–1653. https://doi.org/10.1007/ s12666-019-01601-7
  • 12. Sugavaneswaran M., Vinoth Jebaraj A., Barath Kumar M.D., Lokesh K., John Rajan A. Enhancement of surface characteristics of direct metal laser sintered stainless steel 316L by shot peening. Surfaces and Interfaces. 2018, 12, 31–40. https://doi. org/10.1016/j.surfin.2018.04.010
  • 13. Mohan D., Gopi S., Tomków J., Memon S. Assessment of corrosive behaviour and microstructure characterization of hybrid friction stir welded martensitic stainless steel. Advances in Materials Science. 2021, 21(4) 67–78. https://doi.org/10.2478/ adms-2021-0025
  • 14. Walczak M., Szala M. Efect of shot peening on the surface properties, corrosion and wear performance of 174PH steel produced by DMLS additive manufacturing. Archives of Civil and Mechanical Engineering. 2021, 21, 157. https://doi.org/10.1007/ s43452-021-00306-3
  • 15. Qiao M., Hu J., Guo K., Wang Q. Influence of shot peening on corrosion behavior of low alloy steel. Materials Research Express. 2020, 7, 016574. https:// doi.org/10.1088/2053-1591/ab6920
  • 16. Wang T., Yu J., Dong B. Surface nanocrystallization induced by shot peening and its effect on corrosion resistance of 1Cr18Ni9Ti stainless steel. Surface & Coatings Technology. 2006, 200, 4777– 4781. https://doi.org/10.1016/j.surfcoat.2005.04.046
  • 17. Menezes M.R., Godoy C., Buono V.T.L., Schvartzman M.M., Avelar-Batista Wilson J.C. Effect of shot peening and treatment temperature on wear and corrosion resistance of sequentially plasma treated AISI 316L steel. Surface & Coatings Technology, 2017, 309, 651–662. http://dx.doi.org/10.1016/j. surfcoat.2016.12.037
  • 18. Wang R., Zhou Q., Zheng Z., Gao Y. The negative effect of high-intensity shot-peening on the intergranular corrosion behavior of the Super304H austenitic stainless steel. Corrosion Science. 2018 143, 390– 402. https://doi.org/10.1016/j.corsci.2018.08.026
  • 19. Liu H., Wei Y., Tan K.I.Ch., Ardi D.T., Tan D.C.C., Lee C.J.J. XRD and EBSD studies of severe shot peening induced martensite transformation and grain refinements in austenitic stainless steel. Materials Characterization. 2020, 168, 110574. https:// doi.org/10.1016/j.matchar.2020.110574
  • 20. Szala M., Beer-Lech K., Walczak M. A study on the corrosion of stainless steel floor drains in an indoor swimming pool. Engineering Failure Analysis. 2017, 77, 31–38. https://doi.org/10.1016/j. engfailanal.2017.02.014
  • 21. Matuszak, J. Analysis of geometric surface structure and surface layer microhardness of Ti6Al4V titanium alloy after vibratory shot peening. Materials 2023, 16, 6983. https://doi.org/10.3390/ma16216983
  • 22. Champaigne J. Controlled Shot Peening. (2nd ed.) The Shot Peener, Mishawaka, USA, 1989.
  • 23. Sharma M.C., Mubeen A. Effect of shot size on peening intensity for local peening. Journal of Mechanical Working Technology. 1983, 8, 155–160. https://doi.org/10.1016/0378-3804(83)90033-5
  • 24. Suyitno M.M., Dewo P., Arifvianto B. Study on surface properties and corrosion resistance of 316L stainless steel processed with steel slag ball blasting treatment 9th International Conference on Fracture & Strength of Solids, Jeju, Korea, 09–13.06.2013
  • 25. Kameyama Y., Komotori J. Effect of micro ploughing during fine particle peening process on the microstructure of metallic materials. J. Mater. Processing Technol. 2009, 209, 6146–6155. https://doi. org/10.1016/j.jmatprotec.2009.08.010
  • 26. Iswanto P.T., Akhyar H., Faqihudin A. Effect of shot peening on microstructure, hardness, and corrosion resistance of AISI 316L. Journal of Achievements in Materials and Manufacturing Engineering. 2018, 89, 19–26.
  • 27. Benedetti M., Torresani E., Leoni M., Fontanari V., Bandini M., Pederzolli C., Potrich C. The effect of post-sintering treatments on the fatigue and bio- logical behavior of Ti-6Al-4V ELI parts made by selective laser melting. Journal of the Mechanical Behavior of Biomedical Materials. 2017, 71, 295– 306. https://doi.org/10.1016/j.jmbbm.2017.03.024
  • 28. Żebrowski R., Walczak M., Korga A., Iwan M., Szala M. Effect of shot peening on the mechanical properties and cytotoxicity behaviour of titanium implants produced by 3D printing technology. Journal of Healthcare Engineering. 2019, 1–11. https:// doi.org/10.1155/2019/8169538
  • 29. Żebrowski R., Walczak M., Drozd K., Jarosz M.J. Changes of cytotoxicity of Ti-6Al-4V alloy made by DMLS technology as effect of the shot peening. Annals of Agricultural and Environmental Medicine, 2020, 27, 706–712. https://doi.org/10.26444/ aaem/116386
  • 30. Standard ASTM G102-89, Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements. ASTM, 2010, https://doi.org/10.1520/G0102-89R10
  • 31. Walczak M., Szala M., Okuniewski W. Assessment of corrosion resistance and hardness of shot peened X5CrNi18-10 steel. Materials. 2022, 15, 9000. https://doi.org/10.3390/ma15249000
  • 32. Balusamy T., Sankara Narayanan T.S.N., Ravichandran K., Il Song Park, Min Ho Lee. Influence of surface mechanical attrition treatment (SMAT) on the corrosion behaviour of AISI 304 stainless steel, Corrosion Science. 2013, 74, 332–344. https://doi. org/10.1016/j.corsci.2013.04.056
  • 33. Yang X.S., Sun S., Zhang T.Y., The mechanism of bcc α′ nucleation in single hcp ε laths in the fcc γ → hcp ε → bcc α′ martensitic phase transformation, Acta Mater. 2015, 95, 264–273. https://doi. org/10.1016/j.actamat.2015.05.034
  • 34. Arifvianto B., Mahardika M., Salim U.A., Suyitnos. Comparison of surface characteristics of medical- grade 316L stainless steel processed by sand-blasting, slag ballblasting and shot-blasting treatments. Journal of Engineering and Technological Sciences. 2020, 52, 1–13 https://doi.org/10.5614/j.eng.technol.sci.2020.52.1.1
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2b9aa123-31d9-46ae-b9e4-1e125e8f104a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.