PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of Agricultural Land Use Change on Fungal Community Composition

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Anthropogenic disturbances, such as tillage, management practices, and fertilization, can influence soil microbial communities, but little is known about the effects of land use type on soil fungal communities. In this study, fungal abundance, diversity and community composition in soils were analyzed, to determine the impacts of different agricultural land use types, including old rice paddies (ORP), the long-term and (LTV), short-term (STV) cultivation of vegetables and Magnolia nursery plantations (MNP). Compared to the soils in ORP, the fungal abundance, determined by real-time quantitative polymerase chain reaction, was significantly higher in soils from LTV fields and lower in those from MNP; the copy numbers of the fungal ITS genes in the LTV soils were 30 times greater than in the MNP soils. The terminal restriction fragment length polymorphism (T-RFLP) results showed that the fungal community composition was obviously different in the different soils, based on land use type. Only three T-RFs were found in the soils from the LTV fields, followed by seven in the STV soils and nine in the MNP soils; the most (11) T-RFs were found in the ORP soils. Of the measured soil chemical properties, SOC, available P and NO3--N were the dominant factors that influenced the fungal communities based on the canonical correspondence analysis (CCA). The present study showed that conversion from paddy soil to vegetable cultivation changed soil properties, decreased soil fungal diversity, increased fungal abundance, and shifted fungal community composition
Rocznik
Strony
341--351
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
  • College of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan, 450003, China
autor
  • College of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan, 450003, China
autor
  • Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Mapoling, ChangSha, 410125, China
autor
  • Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Mapoling, ChangSha, 410125, China
Bibliografia
  • 1. Acosta-Martínez V., Dowd S., Sun Y., Allen V. 2008 — Tag-encoded pyrosequencing analysis of bacterial diversity in a single soil type as affected by management and land use — Soil. Biol. Biochem. 40: 2762—2770.
  • 2. Alele P.O., Sheil D., Surget-Groba Y., Lingling S., Cannon C.H. 2014 —How does conversion of natural tropical rainforest ecosystems affect soil bacterial and fungal communities in the Nile river watershed of Uganda? —PLoS One 9: 104818.
  • 3. Amann R.I., Ludwig W., Schleifer K.H. 1995 — Phylogenetic identification and in situ detection of individual microbial cells without cultivation —Microbiol. Rev. 59: 143–169.
  • 4. Beauregard M.S., Hamel C., Atul-Nayyar, St-Arnaud M. 2010 — Long-term phosphorusfertilization impacts soil fungal and bacterial diversity but not AM fungal community in Alfalfa — Micro. Ecol. 59: 379–389.
  • 5. Blanco J.A., Wei X., Jiang H., Jie C., Xin Z. 2012 — Impacts of enhanced nitrogen deposition and soil acidification on biomass production and nitrogen leaching in Chinese fir plantations — Can. J. Forest. Res. 42:437–450.
  • 6. Burke D.J., Weintraub M.N., Hewins C.R., Kalisz S. 2011 — Relationship between soil enzyme activities, nutrient cycling and soil fungal communities in a northern hardwood forest — Soil. Biol. Biochem. 43:795–803.
  • 7. Chen D., Lan Z., Bai X., Grace J.B., Bai Y. 2013 — Evidence that acidification-induced declines in plant diversity and productivity are mediated by changes in below-ground communities and soil properties in a semi-arid steppe — J. Ecol. 101: 1322–1334.
  • 8. Cheng L., Booker F.L., Tu C., Burkey K.O., Zhou L., Shew H.D., Rufty T.W., Hu S. 2012 — Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2 — Science, 337(6098): 1084–1087.
  • 9. Clemmensen K.E., Bahr A., Ovaskainen O., Dahlberg A., Ekblad A., Wallander H., Stenlid J., Finlay R.D., Wardle D.A., Lindahl B.D. 2013 —Roots and associated fungi drive long-term carbon sequestration in Boreal forest — Science, 339(6127): 1615–1618.
  • 10. Dunbar J., Ticknor L.O., Kuske C.R. 2001 — Phylogenetic specificity and reproducibility and new method for analysis of terminal restriction fragment profiles of 16S rRNA genes from bacterial communities — Appl. Environ. Microbiol. 67: 190–197.
  • 11. Edwards I.P., Zak D.R., Kellner H., Eisenlord S.D., Pregitzer K.S. 2011 —Simulated atmospheric N deposition alters fungal community composition and suppresses ligninolytic gene expression in a Northern Hardwood forest— PLoS One, 6: 204–221.
  • 12. Gardes M., Bruns T.D. 1993 — ITS primers with enhanced specificity for basidiomycetes: application to the identification of mycorrhiza and rusts— Mol. Ecol. 2: 113–118.
  • 13. Isbell F., Reich P.B., Tilman D., Hobbie S.E., Polasky S., Binder S. 2013— Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity — PNAS, 110(29): 11911–11916.
  • 14. Jangid K., Williams M.A., Franzluebbers A.J., Sanderlin J.S., Reeves J.H., Jenkins M.B., Endale D.M., Coleman D.C., Whitman W.B. 2008 — Relative impacts of land-use, management intensity and fertilization upon soil microbial community structure in agricultural systems — Soil. Biol. Biochem. 40: 2843–2853.
  • 15. Jesus E.D.C., Marsh T.L., Tiedje J.M., Moreira F.M.D.S. 2009 — Changes in land use alter the structure of bacterial communities in Western Amazon soils — ISME. J. 3:1004–1011.
  • 16. Kant R., Ghosh C., Singh L., Tripathi N. 2011 — Effect of bacterial and fungal abundance in soil on the emission of carbon dioxide from soil in semi-arid climate in India (In: Survival and Sustainability, Environmental Earth Sciences, Eds: H. Gökcekus, U. Türker, J.W. LaMoreaux) —Springer-Verlag Berlin Heidelberg, pp. 151–161.
  • 17. Lau J.A., Lennon J.T. 2011 — Evolutionary ecology of plant—microbe interactions: soil microbial structure alters selection on plant traits —New. Phytol. 192: 215–224.
  • 18. Lauber C.L., Hamady M., Knight R., Fierer N. 2009 — Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale — Appl. Environ. Microbiol. 75:5111–5120.
  • 19. Lehtovirta L.E., Prosser J.I., Nicol G.W. 2009 — Soil pH regulates the abundance and diversity of group 1.1c Crenarchaeota — FEMS. Microbiol. Ecol. 70: 367–376.
  • 20. Lei B., Fan M., Chen Q., Six J., Zhang F. 2010 — Conversion of wheat-maize to vegetable cropping systems changes soil organic matter characteristics — Soil. Sci. Soc. Am. J. 74: 1320–1326.
  • 21. Lewis K., Epstein S., D'Onofrio A., Ling L.L. 2010 — Uncultured microorganisms as a source of secondary metabolites — J. Antibiot. 63:468– 476.
  • 22. Lin X.G., Yin R., Zhang H.Y., Huang J.F., Chen R.R., Cao Z.H. 2004 —Changes of soil microbiological properties caused by land use changing from rice-wheat rotation to vegetable cultivation — Environ-Geochem. Heal. 26:119–128.
  • 23. Marschner P.,Kandeler E., Marschner B. 2003 — Structure and function of the soil microbial community in a long-term fertilizer experiment — Soil Biol. Biochem. 35: 453–461.
  • 24. Miller R.M., Lodge D.J. 2007 — Fungal responses to disturbance: agriculture and forestry (In: The Mycota IV, Environmental and Microbial Relationships, Eds: C.P. Kubicek, I.S. Druzhinina) — Springer-Verlag Berlin Heidelberg, pp. 47–68.
  • 25. Mirza B.S. Potisap C. Nüsslein K. Bohannan B.J. Rodrigues J.L. 2014 —Response of free-living nitrogen-fixing microorganisms to land use change in the Amazon rainforest — Appl. Environ. Microbiol. 80: 281–288.
  • 26. National Bureau of Statistics of China. 2008 — China Agriculture Yearbook— China Agricultai Press, Beijing, 138 pp.
  • 27. Ownley B.H., Gwinn K.D., Vega F.E. 2010 — Endophytic fungal entomopathogens with activity against plant pathogens: ecology and evolution — Bio control, 55: 113–128.
  • 28. Pontes D.S., Lima-Bittencourt C.I., Chartone-Souza E., Amaral Nascimento A.M. 2007 — Molecular approaches: advantages and artifacts in assessing bacterial diversity. J. Ind. Microbiol. Biotechnol. 34:463–473.
  • 29. Rousk J., Bååth E., Brookes P.C., Lauber C.L., Lozupone C., Caporaso J.G., Knight R., Fierer N. 2010a — Soil bacterial and fungal communities across a pH gradient in an arable soil — ISME. J. 4: 1340–1351.
  • 30. Rousk J., Brookes P.C., Bååth E. 2010b — Investigating the mechanisms for the opposing pH relationships of fungal and bacterial growth in soil — Soil. Biol. Biochem. 42: 926–934.
  • 31. Shen W., Lin X., Gao N., Zhang H., Yin R., Shi W., Duan Z. 2008 — Land use intensification affects soil microbial populations, functional diversity and related suppressiveness of cucumber Fusarium wilt in China's Yangtze River Delta — Plant Soil, 306: 117–127.
  • 32. Shen W., Lin X., Shi W., Min J., Gao N., Zhang H., Yin R., He X. 2010 —Higher rates of nitrogen fertilization decrease soil enzyme activities, microbial functional diversity and nitrification capacity in a Chinese polytunnel greenhouse vegetable land — Plant Soil, 337: 137–150.
  • 33. Sheng R., Meng D., Wu M., Di H., Qin H., Wei W. 2013 — Effect of agricultural land use change on community composition of bacteria and ammonia oxidizers — J. Soils Sediment. 13: 1246–1256.
  • 34. Smit E., Leeflang P., Glandorf B., van Elsas J.D., Wernars K. 1999 —Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis — Appl. Environ. Microbiol. 65: 2614–2621.
  • 35. Sun B., Dong Z.X., Zhang X.X., Li Y., Cao H., Cui Z.L. 2011 — Rice to vegetables: short- versus long-term impact of land-use change on the indigenous soil microbial community — Micro. Ecol. 62: 474–485.
  • 36. Theron J., Cloete T.E. 2000 — Molecular techniques for determining microbial diversity and community structure in natural environments —Grit. Rev. Microbiol. 26: 37–57.
  • 37. Tian J., Fan M., Guo J., Marschner P., Li X., Kuzyakov Y. 2012 — Effects of land use intensity on dissolved organic carbon properties and microbial community structure — Euro. J. Soil. Biol. 52:67–72.
  • 38. Van der Heijden M.G.A., Bardgett R.D., van Straalen N.M. 2008 — The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems — Ecol. Lett. 11: 296–310.
  • 39. Val-Moraes S.P., Pedrinho E.A.N., Lemos E.G.M., Carareto-Alves L.M.2008 — Molecular identification of fungal communities in a soil cultivated with vegetables and soil suppressiveness to Rhizoctonia solani — Appl. Environ. Soil Sci. 2013: doi: 10.1155/2013/268768
  • 40. Waldrop M.P., Balser T.C., Firestone M.K. 2000 — Linking microbial community composition to function in a tropical soil — Soil Biol. Biochem.32: 1837–1846.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2b994149-7e9f-4eb1-a176-94347ae3711f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.