PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nonwoven Carbon Fibers with Nanometric Metallic Layers as a Tool to Monitor Regenerative Processes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Still unsolved is the problem of monitoring the tissue regeneration with the use of implants (substrates) in in vivo conditions. The multitude of implant materials combined with their specific immanent often limit standard diagnostic methods, i.e. X-rey or computer tomography (CT). This is particularly difficult in therapies using polymeric high-resistance substrates for tissue engineering. The aim of this study was to fabricate a non-woven carbon fiber composed of carbon fibers (CF) which were then subjected to a surface modification by magnetron sputtering. A layer of iron (Fe) was applied under inert conditions (argon) for different time periods (2-10 min). It was shown that already after 2-4 minutes of iron sputtering, the voxel surface (CF_Fe2’, CF_Fe4’) was covered with a heterogeneous iron layer observed by scanning electron microscope (SEM) with energy dispersive X-ray analysis (EDS). The longer the modification time, the more uniform the layer on the fiber surface becomes. This can be seen by the change in the wettability of the nonwoven surface which decreases from 131° for CF_Fe2 to 120° for CF_Fe10. The fibers do not change their geometry or dimensions (~11.5 um). The determination of pore size distribution by adsorption and desorption techniques (BJH) and specific surface area by nitrogen adsorption method (BET) have shown that the high specific surface area for the CF_Fe2’ fibers decreases by 10% with the increasing iron sputtering time. All the studied CF_Fe fibers show good biocompatibility with osteoblast-like cells MG-63 cells after both 3 and 7 days of culture. Osteoblasts adhere to the fiber surface and show correct morphology.
Twórcy
  • AGH University of Science and Technology, Departament Biomaterials and Composites, Al. Mickiewicza 30, 30-059 Kraków, Poland
  • Łukasiewicz - Lodz Institute of Technology, Łódź, Poland
  • AGH University of Science and Technology, Departament Biomaterials and Composites, Al. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, Departament Biomaterials and Composites, Al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology, Departament Biomaterials and Composites, Al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • Łukasiewicz - Lodz Institute of Technology, Łódź, Poland
Bibliografia
  • [1] L. Qin, W.-F. Liu, X.-G. Liu, Y.-Z. Yang, L.-A. Zhang, New Carbon Mater. 35 (5), 459-485 (2020).
  • [2] J.-S. Tsai, J. Polym. Res. 1 (4), 399-402 (1994).
  • [3] Y.-C. Chiang, C.-C. Lee, H.-C. Lee, J. Porous. Mater. 14 (2), 227-237 (2007).
  • [4] A. Sedghi, R.E. Farsani, A. Shokuhfar, J. Mater. Proces. Tech. 198 (1-3), 60-67 (2008).
  • [5] A.-H. Lu, J.-T. Zheng, J. Colloid Interface Sci. 236 (2), 369-374 (2001).
  • [6] H. Li, M. Liebscher, J. Yang, M. Davoodabadi, L. Li, Y. Du, B. Yang, S. Hempel, V. Mechtcherine, J. Clean. Prod. 368, 133093 (2022).
  • [7] H. Li, M. Liebscher, I. Curosu, S. Choudhury, S. Hempel, M. Davoodabadi, Cem. Concr. Compos. 114, 103777 (2020).
  • [8] M.F. Hassan, M.A. Sabri, H. Fazal, A. Hafeez, N. Shezad, M. Hussain, J. Anal. Appl. Pyrolysis. 145, 104715 (2020).
  • [9] T. Weigel, J. Brennecke, J. Hansmann, Mater. 12 (6), 1378 (2021).
  • [10] O.K. Alexeeva, V.N. Fateev, Int. J. Hydrogen Energy 41 (5), 3373-3386 (2016).
  • [11] J. Frączyk, S. Magdziarz, E. Stodolak-Zych, E. Dzierzkowska, D. Puchowicz, I. Kamińska, M. Giełdowska, M. Boguń, Mater. 14 (12), 3198 (2021).
  • [12] Lonza, ViaLight plus kit cell viability assay, 1-5 (2011).
  • [13] Lonza, ToxiLightTM bioassay kit, 3-7 (2011).
  • [14] S.M. Manocha, H. Patel, L.M. Manocha, J. Mater. Eng. Perform. 22 (2), 396-404 (2013).
  • [15] J.R. Naik, M. Bikshapathi, R.K. Singh, A. Sharma, N. Verma, H.C. Joshi, A. Srivastava, Environ. Eng. Sci. 28 (12), 725-733 (2011).
  • [16] A.A. Lysenko, Fiber Chem. 39, 93-102 (2007).
  • [17] Y. Kohgo, K. Ikuta, T. Ohtake, Y. Torimoto, J. Kato, Int. J. Hematol. 88 (1), 7-15 (2008).
  • [18] Q. Zuo, H. Zheng, P. Zhang, Y. Zhang, Langmuir. 38 (1), 253-263 (2022).
  • [19] A. Tabet-Aoul, M. Mohamedi, Phys. Chem. 14, 4463e74 (2012).
  • [20] Ł. Zych, A.M. Osyczka, A. Łacz, A. Różycka, W. Niemiec, A. Rapacz-Kmita, E. Dzierzkowska, E. Stodolak-Zych, Mater. 14 (4), 843 (2021).
  • [21] E. Stodolak-Zych, P. Jeleń, E. Dzierzkowska, M. Krok-Borkowicz, Ł. Zych, M. Boguń, A. Rapacz-Kmita, B. Kolesińska, J. Mol. Struc. 1211, 128061 (2020).
Uwagi
The work was supported by the National Science Center OPUS 16 UMO project 2018/31/B/ST8/02418.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2b984bfd-4ca3-4707-b23c-36917e69ab72
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.