Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Two series of polyurethane composites were prepared using NDI- and MDI-based prepolymers and common polyol. NDI-based polyurethane is generally resistant to mechanical wear and rebound-resilient whereas MDI-based PU has cushioning and vibration damping features, and both types can be used as a matrix for load-bearing composites. The objective of this study was to compare the mechanical properties of composites containing 5% vol. of ceramic particles prepared with the use of the mentioned PU systems, and unmodified commercial materials. The effect of various ceramic particles on physical and mechanical properties was studied. The results showed that the mechanical properties changed in comparison to reference materials: E’ improved, and impact strength performed favorably in certain materials. Both the tensile strengths and the elongations at break of the composites were found to decrease with the content of ceramic particles; however, the hardness increased gradually. Since ceramic particles offer better stiffness and hardness, the selected composites could be a viable alternative to the pure commercial PUs available in the industry.
Czasopismo
Rocznik
Tom
Strony
33--41
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, 30-059 Krakow, Poland
- Vienna University of Technology, Institute of Materials Science and –Technology, Favoritenstraße 9 11/E308, A-1040 Vienna, Austria
autor
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
- 1. Akindoyo J.O., Beg M.D.H., Ghazali S., Islam M.R., Nitthiyah Jeyaratnam Yuvaraj A.R. Polyurethane types, synthesis and applications – a review. RSC Advances. 2017; 6: 114453–114482.
- 2. Atiqah A., Mastura M.T., Ahmed Ali B.A., Jawaid M., Sapuan S.M. A Review on Polyurethane and its Polymer Composites: Current Organic Synthesis. 2017; 4: 233–248.
- 3. Shiferaw E.W., Lule Z., Kim J. Thermal Conductivity and Mechanical Properties of Thermoplastic Polyurethane-/Silane-Modified Al2O3 Composite Fabricated via Melt Compounding. Polymers. 2019; 11(7):1103.
- 4. Su K.-H., Su C.-Y., Cho C.-T., Lin C.-H., Jhou G.-F., Chang C.-C. Effect of crosslinking on thermal and mechanical properties of polyurethanes. Scientific Reports. 2019; 9:14397.
- 5. Sair S., Oushabi A., Kammouni A., Tanane O., Abboud Y., El Bouari A. Mechanical and thermal conductivity properties of hempfiber reinforced polyurethane composites. Case Studies in Construction Materials. 2018; 8:203-212.
- 6. Xiong J., Zheng Z., Qin X., Li M., Li H., Wang X. The thermal and mechanical properties of a polyurethane/multi-walled carbon nanotube composite. Carbon. 2006; 44(13):2701–2707.
- 7. Junrui Z., Weiping T., Zilin D. Synthesis and characterization of transparent and high impact resistance polyurethane coatings based on polyester polyols and isocyanate trimers. Progress in Organic Coatings. 2012; 75:579– 583.
- 8. Sare I.R., Mardel J.I., Hill A.J. Wear-resistant metallic and elastomeric materials in the mining and mineral processing industries – an overview. Wear. 2001; 250:1–10.
- 9. Garrison T.F., Kessler M.R. Bio-Based Plant Oil Polymers and Composites. Oxford UK, Wolfram USA; Elsevier 2016.
- 10. Ryszkowska J. , A uguścik M. , Z ieleniewska M. , S zczepkowski L., Kurańska M., Bąk S., Antos-Bielska M., Prociak A. Semi-rigid polyurethane foams with rapeseed polyol of different viscosity, Polimery. 2018; 63(1):10–17.
- 11. Ed.: Thomas S., Datta J., Haponiuk J.T., Reghunadhan A. Polyurethanes Polymers. Blends and Interpenetrating Polymer Networks. Amsterdam, Oxford, Cambridge; Elsevier 2017.
- 12. Zhang F., Javni I., Bili O., Bili N., Zoran S. Petrovic, Jan Ilavsky. Eur. Polymer J. 2015; 64(11):1607–1616.
- 13. Fernández-d’Arlas B., Baumann R.P., Pöseltd E., Müller A.J. Influence of composition on the isothermal crystallisation of segmented thermoplastic polyurethanes. Cryst. Eng. Com. 2017; 19: 4720–4733.
- 14. Zhou S.X., Wu L.M., Sun J., Shen W.D. The change of the properties of acrylic-based polyurethane via addition of nano-silica. Progress in Organic Coatings. 2002; 45:33–42.
- 15. Baral D., De P.P., Nando G.B. Thermal characterization of micafilled thermoplastic polyurethane composites. Polymer Degradation and Stability. 1999; 65:47–51.
- 16. Lu H., Obeng Y., Richardson K.A. Applicability of dynamic mechanical analysis for CMP polyurethane pad studies. Materials Characterization. 2003; 49:177–186.
- 17. Crawford D.M., Escarsega J.A. Dynamic mechanical analysis of novel polyurethane coating for military applications. Thermochimica Acta. 2000; 357-358:161-–168.
- 18. Datta J., Rohn M. Thermal properties of polyurethanes synthesized using waste polyurethane foam glycolysates. Journal of Thermal Analysis and Calorimetry. 2007; 88(2):437–440.
- 19. www.perkinelmer.com accessed 16.08.2019
- 20. Narine S.S., Kong X., Bouzidi L., Sporns P. Physical properties of polyurethanes produced from polyols from seed oils: I. Elastomers. Journal of American Oil Chemists’ Society. 2007; 84:55–63.
- 21. Mothe C.G., Araujo C.R. Properties of polyurethane elastomers and composites by thermal analysis. Thermochimica Acta. 2000; 357-358:321–325.
- 22. Bahattab M.A., Donate-Robles J., Garcia-Pacios V., Martin-Martinez J.M. Characterization of polyurethane adhesives containing nanosilicas of different particle size. International Journal of Adhesion & Adhesives. 2011; 31:97–103.
- 23. Zaretsky E., Asaf Z., Ran Aizik E.F. Impact response of high density flexible polyurethane foam. International Journal of Impact Engineering. 2012; 39(1):1–7.
- 24. Grellmann W., Seidler S. Polymer testing. Cincinnati, Ohio; Hanser Gardner Publications 2007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2b9542fb-4f21-4ca2-941c-5abdb8a083f1