PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of the effects of land-use change and increasing deforestation in the Sapanca Basin on total suspended solids (TSS) movement with predictive models

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sapanca Lake is a tectonically sourced freshwater resource and one of the rare natural water resources used as a source of drinking water. This study examined the change of land use and lake area in the natural water source basin subjected to human pressure for years. Landsat 5 TM (1987) and Landsat 8 TM (2010) satellite images were used. Satellite images were analyzed using ArcGIS 10.1 software. As a result of the analysis, it was observed that the natural vegetation was significantly destroyed between 1987 and 2010. Besides, the bathymetry maps of Lake Sapanca belonging to the years 1990 and 2010 were also examined, and accordingly, it was determined that there was a 2% reduction in the lake surface area. The decrease in the volume of the lake was thought to be due to sedimentation movement caused by land-use change, and the total amount of suspended solids, grain size, discharge, and temperature measurements were made between 2012 and 2014 in 12 streams which are sources of Sapanca Lake. Sediment prediction models have been developed under two different scenarios using measurement data from side streams. Artificial neural networks (ANN), Sediment rating curve, and multiple linear regression models were examined within the scenario models, and comparisons were made between the models. It was determined that ANN achieved the closest results with the measurement data.
Czasopismo
Rocznik
Strony
1331--1347
Opis fizyczny
Bibliogr. 55 poz.
Twórcy
autor
  • Department of Civil Engineering, Engineering Faculty, Yalova University, Yalova, Turkey
autor
  • Department of Civil Engineering, Engineering Faculty, Sakarya University, Sakarya, Turkey
autor
  • Department of Civil Engineering, Engineering Faculty, Sakarya University, Sakarya, Turkey
autor
  • Department of Civil Engineering, Engineering Faculty, Kocaeli University, Kocaeli, Turkey
  • Department of Civil Engineering, Engineering Faculty, Kocaeli University, Kocaeli, Turkey
Bibliografia
  • 1. Alfa M, Ajibike MA, Adie DB (2018) Assessment of the change in river discharge-carrying capacity using remote sensing geographic information system: a case study of Ofu river Nigeria. Nigerian J Technol 37(3–4):824–832. https://doi.org/10.1080/15275922.2020.1771629
  • 2. Al-Hashemi HM, Al-Amoudi OS, Yamani ZH, Mustafa YM (2021) The validity of laser diffraction system to reproduce hydrometer results for grain size analysis in geotechnical applications. PLoS ONE 16(1):e0245452. https://doi.org/10.1371/journal.pone.0245452
  • 3. Anilan T, Nacar S, Kankal M, Yuksek O (2020) Prediction of maximum annual flood discharges using artificial neural network approaches. Građevinar 72(03):215–224
  • 4. Asis KG, da Silva YJ, Lopes JW, Medeiros JC, Teixeira MP, Rimá FB, Singh VP (2021) Soil loss and sediment yield in a perennial catchment in southwest Piauí. Braz Environ Monitor Assess 193:26. https://doi.org/10.1007/s10661-020-08789-y
  • 5. Asselman NE (2000) Fitting and interpretation of sediment rating curves. J Hydrol 234:228–248
  • 6. Awal R, Sapkota P, Chitrakar S, Thapa BS, Neopane HP, Thapa B (2019) A general review on methods of sediment sampling and mineral content analysis. J Phys Conf Ser 1266:012005
  • 7. Ay M, Kisi O (2017) Estimation of dissolved oxygen by using neural networks and neuro fuzzy computing techniques. KSCE J Civ Eng 21:1631–1639
  • 8. Ayer J, Gawu SK, Zakaria SA (2014) A non-topographic photogrammetric approach to monitoring total suspended solids (TSS) in environmental control dams in the Ahafo Ano district of Ghana. Am J Social Manag Sci 5(2):44–53. https://doi.org/10.5251/ajsms.2014.5.2.44.53
  • 9. Baniya MB, Asaeda T, Shivaram KC, Jayashanka SM (2019) Hydraulic parameters for sediment transport and prediction of suspended sediment for Kali Gandaki River Basin, Himalaya, Nepal. Water 11:1229. https://doi.org/10.3390/w11061229
  • 10. Bayazit M, and Oguz B (1994) Mühendisler İçin İstatistik. İstanbul: Birsen Yayınevi, (in Turkish)
  • 11. Bayram A, Uzlu E, Kankal M, Dede T (2015) Modeling stream dissolved oxygen concentration using teaching–learning based optimization algorithm. Environ Earth Sci 73(10):6565–6576
  • 12. Bhattacharyya S, Sanyal J (2019) Impact of different types of meteorological data inputs on predicted hydrological and erosive responses to projected land use changes. J Earth Syst Sci 128:60
  • 13. Bisoyi N, Gubta H, Padhy NP, Chakrapani GJ (2019) Prediction of daily sediment discharge using a back propagation neural network training algorithm: a case study of the Narmada river. India Int J Sedim Res 34(2):125–135
  • 14. Boukhrissa ZA, Khanchoul K, Bissonnais YL, Tourki M (2013) Prediction of sediment load by sediment rating curve and neural network (ANN) in El Kebir catchment. Algeria J Earth Syst Sci 122(5):1303–1312. https://doi.org/10.1007/s12040-013-0347-2
  • 15. Damla Y, Temiz T, Keskin T (2020) Estimation of water level by using artificial neural network: example of Yalova Gökçe dam. Kırklareli Univ J Eng Sci 6–1:32–49
  • 16. Dawson CW, Wilby R (1998) An artificial neural network approach to rainfall-runoff modelling. Hydrol Sci J 43:47–66
  • 17. Demirci M, Unes F, Saydemir S (2015) Suspended sediment estimation using an artificial intelligence approach. Sedim Matters. https://doi.org/10.1007/978-3-319-14696-6_6
  • 18. Eberbart RC, Dobbins RW (2014) Neural network PC tools: a practical guide. Academic Press
  • 19. Eid AN, Olatubara CO, Ewemoje TA, Farouk H, El-Hennawy MT (2020) Coastal wetland vegetation features and digital change detection mapping based on remotely sensed imagery: El-Burullus lake Egypt. Int Soil Water Conserv Res 8:66–79
  • 20. Gee GW, Or D (2002) Particle size analysis. In: Dane JH, Clarke TG (eds) Methods of soil analysis. part 4. physical methods. SSSA Book Series
  • 21. Ghorbani MA, Hosseini SH, Fazelifard MH, Abbasi H (2013) Sediment load estimation by MLR, ANN, NF and sediment rating curve (SRC) in Rio Chama river. J Civ Eng Urban 3(4):136–141
  • 22. Giri S, Arbab NN, Lathrop RG (2019) Assessing the potential impacts of climate and land use change on water fluxes and sediment transport in a loosely coupled system. J Hydrol 577:123955. https://doi.org/10.1016/j.jhydrol.2019.123955
  • 23. Gönenç IE, Çetiner A, Eroskay E, Baykal BB, Incecik S, Tanık a, Gürel M (1994) Project on protection of lake Sapanca as a water resource. Minist Environ Turkish Repub
  • 24. Gurbuz A, Gurer ÖF (2008) Tectonic geomorphology of the north Anatolian fault zone in the lake Sapanca Basin (eastern Marmara region, Turkey). Geosci J 12(3):215–225
  • 25. Haddadchi A, Omid MH, Sdehghani AA (2013) Total load transport in gravel bed and sand bed rivers case study: chelichay watershed. Int J Sedim Res 28(1):46–57. https://doi.org/10.1016/S1001-6279(13)60017-7
  • 26. Ileri R, Sumer B, Gezbul H, Senol E (1997) Sapanca Gölüne Mevsimsel Besin Maddesi Yüklenmesinin Araştırılması. SAU Fen Bilimleri Enstitüsü Dergisi 1:1–8 (in Turkish)
  • 27. Isik S (2013) Regional rating curve models of suspended sediment transport for Turkey. Earth Sci Inform 6:87–98. https://doi.org/10.1007/s12145-013-0113-7
  • 28. Kacmaz M (2010) Land use and land use change in Sapanca Lake Basin. PhD Thesis, Istanbul University
  • 29. Kassawmar T, Gessesse GD, Zeleke G, Subhatu A (2018) Assessing the soil erosion control efficiency of land management practices implemented through free community labor mobilization in Ethiopia. Int Soil Water Conserv Res 6:87–98
  • 30. Khaba L, Griffiths JA (2017) Calculation of reservoir capacity loss due to sediment deposition in the Muela reservoir, Northern Lesotho. Int Soil Water Conserv Res 5:130–140
  • 31. Khan MY, Tian F, Hasan F, Chakrapani GJ (2019) Artificial neural network simulation for prediction of suspended sediment concentration in the River Ramganga, Ganges Basin. India Int J Sedim Res 34(2):95–107. https://doi.org/10.1016/j.ijsrc.2018.09.001
  • 32. Licznar P, Nearing MA (2003) Artificial neural networks of soil erosion and runoff prediction at the plot scale. CATENA 51(2):89–114
  • 33. Mahdy ZY, & Ali HM (2019) Measuring the water pollution of selected sites in Al- Najaf covenarate (TSS) and using remote sensing data. Journal of Physics Conference Series, In: 2nd International Science Conference - IOP Publishing
  • 34. Nacar S, Hınıs MA, Kankal M (2018) Forecasting daily streamflow discharges using various neural network models and training algorithms. KSCE J Civ Eng 22(9):3676–3685
  • 35. Nacar S, Bayram A, Baki OT, Kankal M, Aras E (2020) Spatial forecasting of dissolved oxygen concentration in the eastern Black Sea Basin Turkey. Water 12(4):1041
  • 36. Nearing MA, Nichols MH, Stone JJ, Renard KG, Simanton JR (2007) Sediment yields from unit-source semiarid watersheds at walnut gulch. Water Resour Res 43:W06426. https://doi.org/10.1029/2006WR005692
  • 37. Noble AE, Tuit CB, Maney JP, Wait AD (2020) A review of marine water sampling methods for trace metals. Environ Forensics 21(3–4):267–290
  • 38. Piscoya VC, Singh VP, Cantalice JR, Filho MC, Guerra SM, Riberio CD, Bezerra SA (2018) Evaluating of sediment delivery ratio on spatial and temporal variabilities in semiarid watershed Brazil. J Exp Agric Int 23(2):1–10
  • 39. Sarlak N, Ustun D (2020) The derivation of sediment rating curve: case study of gomelonu station. Harran Univ J Eng 5(1):09–20
  • 40. Sen Z (2004) Yapay Sinir Ağı İlkeleri. Istanbul: Su Vakfi. (in Turkish)
  • 41. Tabatabaei M, Jam AS, Hosseini SA (2019) Suspended sediment load prediction using non-dominated sorting genetic algorithm II. Int Soil Water Conserv Res 7(2):119–129. https://doi.org/10.1016/j.iswcr.2019.01.004
  • 42. Tarar ZR, Ahmad SR, Ahmad I, Hasson SU, Khan ZM, Washakh RM, Bui MD (2019) Effect of sediment load boundary conditions in predicting sediment delta of tarbela reservoir in Pakistan. Water 11:1716. https://doi.org/10.3390/w11081716
  • 43. Tayfur G (2012) Soft computing methods in water resources eengineering: artificial neural networks, fuzzy logic, and genetic algorithm. WIT Press, Southampton
  • 44. Temiz T, Damla Y, & Keskin T (2021) Gökçe dam chamber water level estimation with Gdm algorithm. In: Yalova Research Congress Proceedings Book 22–23: 136–141
  • 45. Temiz T (2015) Estimation of suspended solid quantity transported on tributaries of lake Sapanca Basin. PhD Thesis, Kocaeli University
  • 46. Tunay S (2015) Determination of phosphorus loads in Sapanca basin tributaries and Lake Sapanca. PhD Thesis, Sakarya University
  • 47. Turnipseed DP, and Sauer VB (2010) Discharge measurements at gaging stations. In: geological survey techniques and methods book 3 - A8. Reston, Virginia: US Geological Survey. Retrieved from https://pubs.usgs.gov/tm/tm3-a8/
  • 48. Ustaoglu F, Tepe Y (2019) Water quality and sediment contamination assessment of Pazarsuyu Stream, Turkey using multivariate statistical methods and pollution indicators. Int Soil Water Conserv Res 7:47–56
  • 49. Uzlu E, Akpınar A, Özturk HT, Nacar S, Kankal M (2014) Estimates of hydroelectric generation using neural networks with the artificial bee colony algorithm for Turkey. Energy 69:638–647
  • 50. Warrick JA, Rubin DM (2007) Suspended-sediment rating curve response to urbanization and wildfire, Santa Ana River California. J Geophys Res 112:F02018. https://doi.org/10.1029/2006JF000662
  • 51. Yan R, Zhang X, Yan SY, Chen H (2018) Estimating soil erosion response to land use/cover change in a catchment of the loess plateau, China. Int Soil Water Conserv Res 6:13–22
  • 52. Yang X, Sun W, Li P, Mu X, Gao P, Zhao G (2019) Integrating agricultural land, water yield and soil conservation trade-offs into spatial land use planning. Ecol Indic 104:219–228
  • 53. Yang CY (2019) The sediment yield of south Korean rivers. PhD Thesis, Colorado State University
  • 54. Yilmaz B, Aras E, Kankal M, Nacar S (2019) Prediction of suspended sediment loading by means of hybrid artificial intelligence approaches. Acta Geophys 67:1693–1705. https://doi.org/10.1007/s11600-019-00374-3
  • 55. Zhang T, Stansbury J, Branigan JA (2013) Development of a field test method for total suspended solids analysis. Mid-America Transportation Center - University of Nebraska, Lincoln - Nebraska
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2b917e70-8d8c-4154-8147-55eafaf55e18
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.