PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of the carbon sequestration capacity of arid mangroves along nutrient availability and salinity gradients along the Red Sea coastline of Saudi Arabia

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present work, we assessed the carbon sequestration capacity of mangrove forests (Avicennia marina) in relation to nutrient availability and salinity gradients along the Red Sea coast of Saudi Arabia. This was achieved through estimating the sediment bulk density (SBD), sediment organic carbon (SOC) concentration, SOC density, SOC pool, carbon sequestration rate (CSR) and carbon sequestration potential (CSP). The present study was conducted at 3 locations (northern, middle and southern), using 7 sites and 21 stands of mangrove forests (A. marina) along ∼1134 km of the Red Sea coastline of Saudi Arabia (from Duba in the north to Jazan in the south), all of which are in an arid climate. The correlation coefficients between the water characteristics and the first two Canonical Correspondence Analysis (CCA) axes indicated that the separation of the sediment parameters along the first axis were positively influenced by TDS (total dissolved solids) and EC (electric conductivity) and were negatively influenced by total N and total P. On the other hand, the second axis was negatively correlated with total N, total P, EC and TDS. The SOC pools at the northern (10.5 kg C m−2) and southern locations (10.4 kg C m−2) were significantly higher than the SOC pool at the middle location (6.7 kg C m−2). In addition, the average CSR of the northern (5.9 g C m−2 yr−1) and southern locations (6.0 g C m−2 yr−1) were significantly higher than they were in the middle location (5.0 g C m−2 yr−1).
Czasopismo
Rocznik
Strony
56--69
Opis fizyczny
Bibliogr. 91 poz., mapa, rys., tab., wykr.
Twórcy
  • Botany Department, Faculty of Science, Tanta University, Tanta, Egypt
  • Botany Department, Faculty of Science, Tanta University, Tanta, Egypt
  • Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
  • Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
  • Botany Department, Faculty of Science, Tanta University, Tanta, Egypt
  • Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
Bibliografia
  • [1] Adame, M. F., Kauffman, J. B., Boone, J., Medina, I., Gamboa, J. N., Torres, O., Caamal, J. P., Reza, M., Herrera-Silveira, J. A., 2013. Carbon stocks of tropical coastal wetlands within the karstic landscape of the Mexican Caribbean. PLoS One 8 (2), e56569.
  • [2] Allison, M. A., Khan, S. R., Goodbred Jr., S. L., Kuehl, S. A., 2003. Stratigraphic evolution of the late Holocene Ganges-Brahmaputra lower delta plain. Sediment Geol. 155 (3-4), 317-342.
  • [3] Almahasheer, H., 2018. Spatial coverage of mangrove communities in the Arabian Gulf. Environ. Monit. Assess. 190 (2), art. no. 85, 10 pp., http://dx.doi.org/10.1007/s10661-018-6472-2.
  • [4] Almahasheer, H., Aljowair, A., Duarte, C. M., Irigoien, X., 2016a. Decadal stability of Red Sea mangroves. Estuar. Coast. Shelf Sci. 169, 164-172, http://dx.doi.org/10.1016/j.ecss.2015.11.027.
  • [5] Almahasheer, H., Duarte, C., Irigoien, X., 2016b. Nutrient limitation in central Red Sea mangroves. Front. Mar. Sci. 3 , art. no. 271, 14 pp., http://dx.doi.org/10.3389/fmars.2016.00271.
  • [6] Almahasheer, H., Duarte, C., Irigoien, X., 2016c. Phenology and growth dynamics of Avicennia marina in the central Red Sea. Sci. Rep. 6 (1), art. no. 37785, 9 pp., http://dx.doi.org/10.1038/srep37785.
  • [7] Almahasheer, H., Serrano, O., Duarte, C., Arias-Ortiz, A., Masque, P., Irigoien, X., 2017. Low carbon sink capacity of Red Sea mangroves. Sci. Rep. 7 (1), art. no. 9700, 10 pp., http://dx.doi.org/10.1038/s41598-017-10424-9.
  • [8] Alongi, D., Tirendi, F., Clough, B., 2000. Below-ground decomposition of organic matter in forests of the mangroves Rhizophora stylosa and Avicennia marina along the arid coast of Western Australia. Aquat. Bot. 68 (2), 97-122, http://dx.doi.org/10.1016/S0304-3770(00)00110-8.
  • [9] Alongi, D., Wattayakorn, G., Pfitzner, J., Tirendi, F., Zagorskis, I., Brunskill, G., Davidson, A., Clough, B., 2001. Organic carbon accumulation and metabolic pathways in sediments of mangrowe forests in southern Thailand. Mar. Geol. 179 (1-2), 85-103, http://dx.doi.org/10.1016/S0025-3227(01)00195-5.
  • [10] Alongi, D. M., Clough, B. F., Dixon, P., Tirendi, F., 2003. Nutrient partitioning and storage in arid-zone forests of the mangroves Rhizophora stylosa and Avicennia marina. Trees 17 (1), 51-60, http://dx.doi.org/10.1007/s00468-002-0206-2.
  • [11] Alongi, D. M., 1998. Coastal Ecosystem Processes. CRC Press, Florida, 448 pp.
  • [12] Alongi, D. M., 2011. Early growth responses of mangroves to different rates of nitrogen and phosphorus supply. J. Exp. Mar. Biol. Ecol. 397 (2), 85-93, http://dx.doi.org/10.1016/j.jembe.2010.11.021.
  • [13] Alongi, D. M., 2012. Carbon sequestration in mangrove forests. Carbon Manage. 3 (3), 313-322, http://dx.doi.org/10.4155/cmt.12.20.
  • [14] Alongi, D. M., 2014. Carbon cycling and storage in mangrove forests. Annu. Rev. Mar. Sci. 6 (1), 195-219, http://dx.doi.org/10.1146/annurev-marine-010213-135020.
  • [15] Arshad, M., Alrumman, S., Eid, E. M., 2018. Evaluation of carbon sequestration in the sediment of polluted and non-polluted locations of mangroves. Fund. Appl. Limnol. 192 (1), 53-64, http://dx.doi.org/10.1127/fal/2018/1127.
  • [16] Bouillon, S., Borges, A., Casteneda-Moya, E., Diele, K., Dittmar, T., 2008. Mangrove production and carbon sinks: a revision of global budget estimates. Global Biogeochem. Cy. 22 (2), art. no. GB2013, 12 pp., http://dx.doi.org/10.1029/2007GB003052.
  • [17] Bouillon, S., Dahdouh-Guebas, F., Rao, A. V. V. S., Koedam, N., Dehairs, F., 2003. Sources of organic carbon in mangrove sediments: variability and possible ecological implications. Hydrobiologia 495 (1-3), 33-39, http://dx.doi.org/10.1023/A:1025411506526.
  • [18] Breithaupt, J., Smoak, J., Smith, T., Sanders, C., Hoare, A., 2012. Organic carbon burial rates in mangrove sediments: strengthening the global budget. Global Biogeochem. Cy. 26 (3), art. no. GB3001, 11 pp., http://dx.doi.org/10.1029/2012GB004375.
  • [19] Bunting, P., Rosenqvist, A., Lucas, R. M., Rebelo, L.-M., Hilarides, L., Thomas, N., Hardy, A., Itoh, T., Shimada, M., Finlayson, C. M., 2018. The global mangrove watch - a new 2010 global baseline of mangrove extent. Remote Sens. 10 (1), art. no. 1669, http://dx.doi.org/10.3390/rs10101669.
  • [20] Chen, L., Zeng, X., Tam, N. F. Y., Lu, W., Luo, Z., Du, X., Wang, J., 2012. Comparing carbon sequestration and stand structure of monoculture and mixed mangrove plantations of Sonneratia caseolaris and S. apetala in Southern China. Forest Ecol. Manage. 284, 222-229, http://dx.doi.org/10.1016/j.foreco.2012.06.058.
  • [21] Donato, D., Kauffman, J., Murdiyarso, D., Kurnianto, S., Stidham, M., Kanninen, M., 2011. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 4 (5), 293-297, http://dx.doi.org/10.1038/ngeo1123.
  • [22] Drewry, J. J., Cameron, K. C., Buchan, G. D., 2008. Pasture yield and soil physical property responses to soil compaction from treading and grazing - a review. Aust. J. Soil Res. 46 (3), 237-256, http://dx.doi.org/10.1071/SR07125.
  • [23] Edwards, A. J., Head, S. M., 1987. Key Environment: Red Sea. Pergamon Press, Headington Hill Hall, Oxford, 451 pp., http://dx.doi.org/10.1016/C2009-0-07683-1.
  • [24] Edwards, F. J., 1987. Climate and oceanography. In: Edwards, A. J., Head, S. M. (Eds.), Key Environment: Red Sea. Pergamon Press, New York, 45-69.
  • [25] Eid, E. M., Arshad, M., Shaltout, K. H., El-Sheikh, M. A., Alfarhan, A. H., Picó, Y., Barcelo, D., 2019. Effect of the conversion of mangroves into shrimp farms on carbon stock in the sediment along the southern Red Sea coast, Saudi Arabia. Environ. Res. 176, art. no. 108536, 7 pp., http://dx.doi.org/10.1016/j.envres.2019.108536.
  • [26] Eid, E. M., El-Bebany, A. F., Alrumman, S. A., 2016. Distribution of soil organic carbon in the mangrove forests along the southern Saudi Arabian Red Sea coast. Rend. Fis. Acc. Lincei. 27 (4), 629-637, http://dx.doi.org/10.1007/s12210-016-0542-6.
  • [27] Eid, E. M., Shaltout, K. H., 2016. Distribution of soil organic carbon in the mangrove Avicennia marina (Forssk.) Vierh. along the Egyptian Red Sea coast. Reg. Stud. Mar. Sci. 3, 76-82, http://dx.doi.org/10.1016/j.rsma.2015.05.006.
  • [28] El-Juhany, L. I., 2009. Present status and degradation trends of mangrove forests on the southern Red Sea coast of Saudi Arabia. Am. Euras. J. Agric. Environ. Sci. 6 (3), 328-340.
  • [29] Feller, I. C., McKee, K. L., Whigham, D. F., O'Neill, J. P., 2003. Nitrogen vs. phosphorus limitation across an ecotonal gradient in a mangrowe forest. Biogeochemistry 62 (2), 145-175, http://dx.doi.org/10.1023/A:1021166010892.
  • [30] Ferreira, T. O., Otero, X. L., de Souza Junior, V. S., Vidal-Torrado, P., Macías, F., Firme, L. P., 2010. Spatial patterns of soil attributes and components in a mangrove system in Southeast Brazil (São Paulo). J. Soils Sediments 10 (6), 995-1006, http://dx.doi.org/10.1007/s11368-010-0224-4.
  • [31] Girmay, G., Singh, B. R., 2012. Changes in soil organic carbon stocks and soil quality: land-use system effects in northern Ethiopia. Acta Agric. Scand., Sect. B - Soil Plant Sci. 62 (6), 519-530, http://dx.doi.org/10.1080/09064710.2012.663786.
  • [32] Han, F., Hu, W., Zheng, J., Du, F., Zhang, X., 2010. Estimating soil organic carbon storage and distribution in a catchment of Loess Plateau, China. Geoderma 154 (3-4), 261-266, http://dx.doi.org/10.1016/j.geoderma.2009.10.011.
  • [33] Hussain, M., Khojat, T., 1993. Intertidal and subtidal blue-green algal mats of open and mangrove areas in the Farasan Archipelago (Saudi Arabia), Red Sea. Bot. Mar. 36 (5), 377-388, http://dx.doi.org/10.1515/botm.1993.36.5.377.
  • [34] Jones, J. B., 2001. Laboratory Guide for Conducting Soil Tests and Plant Analysis. CRC Press, Florida, 384 pp.
  • [35] Kauffman, J. B., Heider, C., Cole, T. G., Dwire, K. A., Donato, D. C., 2011. Ecosystem carbon stocks of Micronesian mangrove forests. Wetlands 31 (2), 343-352, http://dx.doi.org/10.1007/s13157-011-0148-9.
  • [36] Khan, M., Suwa, R., Hagihara, A., 2007. Carbon and nitrogen pools in a mangrove stand of Kandelia obovata (S., L.) Yong: vertical distribution in the soil-vegetation system. Wetlands Ecol. Manage. 15 (2), 141-153, http://dx.doi.org/10.1007/s11273-006-9020-8.
  • [37] Kristensen, E., Bouillon, S., Dittmar, T., Marchand, C., 2008. Organic carbon dynamics in mangrove ecosystems: a review. Aquat. Bot. 89 (2), 201-219, http://dx.doi.org/10.1016/j.aquabot.2007.12.005.
  • [38] Kumar, A., Asif Khan, M., Muqtadir, A., 2010. Distribution of mangroves along the Red Sea Coast of the Arabian Peninsula: Part-I: the Northern Coast ofWestern Saudi Arabia. Earth Sci. India 3 (3), 28-42.
  • [39] Kusumaningtyas, M. A., Hutahaean, A. A., Fischer, H. W., Pérez-Mayo, M., Ransby, D., Jennerjahn, T. C., 2019. Variability in the organic carbon stocks, sources, and accumulation rates of Indonesian mangrove ecosystems. Estuar. Coast. Shelf Sci. 218, 310-323, http://dx.doi.org/10.1016/j.ecss.2018.12.007.
  • [40] Lacerda, L., Ittekkot, V., Patchineelam, S., 1995. Biogeochemistry of mangrove soil organic matter: a comparison between Rhizophora and Avicennia soils in south-eastern Brazil. Estuar. Coast. Shelf Sci. 40 (6), 713-720, http://dx.doi.org/10.1006/ecss.1995.0048.
  • [41] Lovelock, C., Feller, I., McKee, K., Engelbrecht, B., Ball, M., 2004. The effect of nutrient enrichment on growth, photosynthesis and hydraulic conductance of dwarf mangroves in Panama. Funct. Ecol. 18 (1), 25-33, http://dx.doi.org/10.1046/j.0269-8463.2004.00805.x.
  • [42] Lunstrum, A., Chen, L., 2014. Soil carbon stocks and accumulation in young mangrove forests. Soil Biol. Biochem. 75, 223-232, http://dx.doi.org/10.1016/j.soilbio.2014.04.008.
  • [43] Mandura, A. S., 1997. A mangrove stand under sewage pollution stress: Red Sea. Mangroves Salt Marshes 1 (4), 255-262, http://dx.doi.org/10.1023/A:1009927605517.
  • [44] Mandura, A. S., Khafaji, A. K., Saifullah, S. M., 1988. Ecology of a mangrove stand of a central Red Sea coast area: Ras Hatiba (Saudi Arabia). Proc. Saudi Biol. Soc. 11, 85-112.
  • [45] Mandura, A. S., Khafaji, A. K., Saifullah, S. M., 1987. Mangrove ecosystem of southern Red Sea coast of Saudi Arabia. Proc. Saudi Biol. Soc. 10, 165-193.
  • [46] Meersmans, J., De Ridder, F., Canters, F., De Baets, S., Van Molle, M., 2008. A multiple regression approach to assess the spatial distribution of soil organic carbon (SOC) at the regional scale (Flanders Belgium). Geoderma 143 (1-2), 1-13, http://dx.doi.org/10.1016/j.geoderma.2007.08.025.
  • [47] Mizanur Rahman, M., Nabiul Islam Khan, M., Fazlul Hoque, A. K., Ahmed, I., 2015. Carbon stock in the Sundarbans mangrowe forest: spatial variations in vegetation types and salinity zones. Wetlands Ecol. Manag. 23 (2), 269-283, http://dx.doi.org/10.1007/s11273-014-9379-x.
  • [48] Morley, N. J. F., 1975. The coastal waters of the Red Sea. Bull. Mar. Res. Cen. 5, 8-19.
  • [49] Naidoo, G., 2009. Differential effects of nitrogen and phosphorus enrichment on growth of dwarf Avicennia marina mangroves. Aquat. Bot. 90 (2), 184-190, http://dx.doi.org/10.1016/j.aquabot.2008.10.001.
  • [50] Nóbrega, G. N., Ferreira, T. O., Artur, A. G., Mendonça, E. S., Leão, R. A., Teixeira, A. S., Otero, X. L., 2015. Evaluation of methods for quantifying organic carbon in mangrove soils from semi-arid region. J. Soil. Sediment. 15 (2), 282-291, http://dx.doi.org/10.1007/s11368-014-1019-9.
  • [51] Nóbrega, G. N., Ferreira, T. O., Neto, M. S., Mendonça, E. S., Romero, R. E., Otero, X. L., 2019. The importance of blue carbon soil stocks in tropical semiarid mangroves: a case study in Northeastern Brazil. Environ. Earth Sci. 78 (12), art. no. 369, 10 pp., http://dx.doi.org/10.1007/s12665-019-8368-z.
  • [52] Novozamsky, I., van Eck, R., van Schouwenburg, J.,Walinga, I., 1974. Total nitrogen determination in plant material by means of the indophenol blue method. Neth. J. Agric. Sci. 22, 3-13.
  • [53] Ochoa-Gómez, J. G., Lluch-Cota, S. E., Rivera-Monroy, V. H., Lluch-Cota, D. B., Troyo-Diéguez, E., Oechel,W., Serviere-Zaragoza, E., 2019. Mangrove wetland productivity and carbon stocks in an arid zone of the Gulf of California (La Paz Bay, Mexico). Forest Ecol. Manage. 442, 135-147, http://dx.doi.org/10.1016/j.foreco.2019.03.059.
  • [54] Page, M. L., 2019. Carbon dioxide levels will soar past the 410 ppm milestone in 2019. NewScientist 3214.
  • [55] Pravin, R., Dodha, V., Vidya, D., Manab, C., Saroj, M., 2013. Soil bulk density as related to soil texture, organic matter content and available total nutrients of Coimbatore soil. IJSRP 3 (2), 1-8.
  • [56] Pribyl, D. W., 2010. A critical review of the conventional SOC to SOM conversion factor. Geoderma 156 (3-4), 75-83, http://dx.doi.org/10.1016/j.geoderma.2010.02.003.
  • [57] Price, A., Jobbins, G., Dawson Shepherd, A., Ormond, R., 1998. An integrated environmental assessment of the Red Sea coast of Saudi Arabia. Environ. Conserv. 25 (1), 65-76, http://dx.doi.org/10.1017/S0376892998000101.
  • [58] Price, A. R., Medley, P. A., McDowall, R. J., Dawson-Shepherd, A. R., Hogarth, P. J., Ormond, R. F., 1987. Aspects of mangal ecology along the Red Sea coast of Saudi Arabia. J. Nat. Hist. 21 (2), 449-464, http://dx.doi.org/10.1080/00222938700771121.
  • [59] Ray, R., Ganguly, D., Chowdhury, C., Dey, M., Das, S., Dutta, M., Mandal, S., Majumder, N., De, T., Mukhopadhyay, S., Jana, T., 2011. Carbon sequestration and annual increase of carbon stock in a mangrove forest. Atmos. Environ. 45 (28), 5016-5024, http://dx.doi.org/10.1016/j.atmosenv.2011.04.074.
  • [60] Ray, R., Weigt, M., 2018. Seasonal and habitat-wise variations of creek water particulate and dissolved organic carbon in arid mangrove (the Persian Gulf). Cont. Shelf Res. 165, 60-70, http://dx.doi.org/10.1016/j.csr.2018.06.009.
  • [61] Rovai, A., et al., 2018. Global controls on carbon storage in mangrowe soils. Nat. Clim. Change 8 (6), 534-538, http://dx.doi.org/10.1038/s41558-018-0162-5.
  • [62] Rumpel, C., Amiraslani, F., Koutika, L.-S., Smith, P., Whitehead, D., Wollenberg, E., 2018. Put more carbon in soils to meet Paris climate pledges. Nature 564 (7734), 32-34, http://dx.doi.org/10.1038/d41586-018-07587-4.
  • [63] Saifullah, S. M., 1994. Mangrove ecosystem of Saudi Arabian Red Sea coast - an overview. J. KAU: Mar. Sci. 7, 263-270.
  • [64] Saifullah, S. M., 1997. Mangrove ecosystem of Red Sea coast (Saudi Arabian). Pak. J. Mar. Sci. 6 (1-2), 115-124.
  • [65] Sanderman, J., Hengl, T., Fiske, G., Solvik, K., Adame, M., Benson, L., Bukoski, J., Carnell, P., Cifuentes-Jara, M., Donato, D., Duncan, C., Eid, E., zu Ermgassen, P., Ewers Lewis, C., Macreadie, P., Glass, L., Gress, S., Jardine, S., Jones, T., Nsombo, E., Rahman, M., Sanders, C., Spalding, M., Landis, E., 2018. A global map of mangrove forest soil carbon at 30 m spatial resolution. Environ. Res. Lett. 13 (5), art. no. 055002, 12 pp., http://dx.doi.org/10.1088/1748-9326/aabe1c.
  • [66] Sanders, C. J., Smoak, J. M., Naidu, A. S., Sanders, L. M., Patchineelam, S. R., 2010. Organic carbon burial in a mangrove forest, margin and intertidal mud flat. Estuar. Coast. Shelf Sci. 90 (3), 168-172, http://dx.doi.org/10.1016/j.ecss.2010.08.013.
  • [67] Sato, G., Negassi, S., Tahiri, A., 2011. The only elements required by plants that are deficient in sea water are nitrogen, phosphorous and iron. Cytotechnology 63 (2), 201-204, http://dx.doi.org/10.1007/s10616-011-9342-0.
  • [68] Schile, L. M., Kauffman, J. B., Crooks, S., Fourqurean, J. W., Glavan, J., Megonigal, J. P., 2017. Limits on carbon sequestration in arid blue carbon ecosystems. Ecol. Appl. 27 (3), 859-874, http://dx.doi.org/10.1002/eap.1489.
  • [69] Shaltout, K. H., 2016. Economic and Environmental Values of Mangroves in Arabic Region. In: Proc. The First Saudi Conference on Environment: Sustainable Management of Natural Resources, King Khalid University & Center of Prince Sultan Ben Abd El-Aziz for Environmental and Touristic Research and Studies. Abha, Saudi Arabia, 7-9 March 2016.
  • [70] Shaltout, K. H., Ayyad, M., 1988. Structure and standing crop of Egyptian Thymelaea hirsuta populations. Vegetatio 74 (2-3), 137-142, http://dx.doi.org/10.1007/BF00044738.
  • [71] Shaltout, K. H., El-Bana, M. I., Eid, E. M., 2018. Ecology of the Mangrove Forests along the Egyptian Red Sea Coast. LAP Lambert Acad. Publ., Saarbrücken, 168 pp.
  • [72] Sherry, S., Ramon, A., Eric, M., Richard, E., Barry, W., Peter, D., Susan, T., 1998. Precambrian shield wetlands: hydrologic control of the sources and export of dissolved organic matter. Clim. Change 40 (2), 167-188, http://dx.doi.org/10.1023/A:1005496331593.
  • [73] Siikamäki, J., Sanchirico, J., Jardine, S., 2012. Global economic potential for reducing carbon dioxide emissions from mangrowe loss. PANAS 109 (36), 14369-14374, http://dx.doi.org/10.1073/pnas.1200519109.
  • [74] Siraj, A., 1984. Climate of Saudi Arabia. Fauna of Saudi Arabia 6, 32-52.
  • [75] SPSS, 2006. SPSS Base 15.0 User's Guide. SPSS Inc., Chicago.
  • [76] Strickland, J. D., Parsons, T. R., 1972. Determination of reactive phosphorus. In: A Practical Handbook of Seawater Analysis. Bull. Fisheries Res. Board Canada, no. 167, 49-56.
  • [77] Suárez-Abelenda, M., Ferreira, T. O., Camps-Arbestain, M., Rivera-Monroy, V. H., Macías, F., Nóbrega, G. N., Otero, X. L., 2014. The effect of nutrient-rich effluents from shrimp farming on mangrowe soil carbon storage and geochemistry under semi-arid climate conditions in northern Brazil. Geoderma 213, 551-559, http://dx.doi.org/10.1016/j.geoderma.2013.08.007.
  • [78] Taillardat, P., Friess, D. A., Lupascu, M., 2018. Mangrove blue carbon strategies for climate change mitigation are most effective at the national scale. Biol. Lett. 14 (10), art. no. 20180251, 6 pp., http://dx.doi.org/10.1098/rsbl.2018.0251.
  • [79] Tan, K. H., 2005. Soil Sampling, Preparation, and Analysis. Taylor & Francis Group, CRC Press, Florida, 672 pp., http://dx.doi.org/10.1201/9781482274769.
  • [80] Ter Braak, C. J. F., Šmilauer, P., 2012. Canoco Reference Manual and User's Guide: Software for Ordination (Version 5.0). Microcomputer Power, Ithaca.
  • [81] Triantafyllou, G., Yao, F., Petihakis, G., Tsiaras, K., Raitsos, D., Hoteit, I., 2014. Exploring the Red Sea seasonal ecosystem functioning using a three-dimensional biophysical model. J. Geophys. Res. Oceans 119 (3), 1791-1811, http://dx.doi.org/10.1002/2013JC009641.
  • [82] Tue, N., Ngoc, N., Quy, T., Hamaoka, H., Nhuan, M.,Omori, K., 2012. A cross-system analysis of sedimentary organic carbon in the mangrowe ecosystems of Xuan Thuy National Park Vietnam. J. Sea Res. 67 (1), 69-76, http://dx.doi.org/10.1016/j.seares.2011.10.006.
  • [83] Twilley, R. R., Rovai, A. S., Riul, P., 2018. Coastal morphology explains global blue carbon distributions. Front. Ecol. Environ. 16 (9), 1-6, http://dx.doi.org/10.1002/fee.1937.
  • [84] Vaiphasa, C., de Boer, W. F., Skidmore, A. K., Panitchart, S., Vaiphasa, T., Bamrongrugsa, N., Santitamnont, P., 2007. Impact of solid shrimp pond waste materials on mangrove growth and mortality: a case study from Pak Phanang, Thailand. Hydrobiologia 591 (1), 47-57, http://dx.doi.org/10.1007/s10750-007-0783-6.
  • [85] Weiner, J., 1984. Neighbourhood interference amongst Pinus rigida individuals. J. Ecol. 72 (1), 183-195, http://dx.doi.org/10.2307/2260012.
  • [86] Wilke, B. M., 2005. Determination of chemical and physical soil properties. In: Margesin, R., Schinner, F. (Eds.), Manual for Soil Analysis-Monitoring and Assessing Soil Bioremediation. Springer, Heidelberg, 47-95.
  • [87] Woomer, P. L., Tieszen, L. L., Tappan, G., Touré, A., Sall, M., 2004. Land use change and terrestrial carbon stocks in Senegal. J. Arid Environ. 59 (3), 625-642, http://dx.doi.org/10.1016/j.jaridenv.2004.03.025.
  • [88] Xiaonan, D., Xiaoke, W., Lu, F., Zhiyun, O., 2008. Primary evaluation of carbon sequestration potential of wetlands in China. Acta. Ecol. Sinica 28 (2), 463-469, http://dx.doi.org/10.1016/S1872-2032(08)60025-6.
  • [89] Xue, B., Yan, C., Lu, H., Bai, Y., 2009. Mangrove-derived organic carbon in sediment from Zhangjiang Estuary (China) mangrowe wetland. J. Coast. Res. 25 (4), 949-956, http://dx.doi.org/10.2112/08-1047.1.
  • [90] Yang, J., Gao, J., Liu, B., Zhang, W., 2014. Sediment deposits and organic carbon sequestration along mangrove coasts of the Leizhou Peninsula, southern China. Estuar. Coast. Shelf Sci. 136, 3-10, http://dx.doi.org/10.1016/j.ecss.2013.11.020.
  • [91] Yong, Y., Baipeng, P., Guangcheng, C., Yan, C., 2011. Processes of organic carbon in mangrove ecosystems. Acta Ecol. Sinica 31 (3), 169-173, http://dx.doi.org/10.1016/j.chnaes.2011.03.008.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2b818a53-29c5-4e25-9068-74bcb4db4926
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.