PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative Analysis of Heat Resistance of Ornamental Urban Plants in Kyiv

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Urban plants play a significant role in shaping the microclimate of the modern city, in addition to the recreational and aesthetic functions. Climate change and sharp changes in temperature affect the plant growth and development, so the question of studying the adaptive potential of the plant range in cities to temperature variability is relevant and important. Researchers and scientists around the world are studying the impact of biotic and abiotic factors on plants, but the variability of the plant organisms in the urban ecosystem is still unexplored. The data from the analysis of the frequency of occurrence plants in Kyiv green spaces show that Tilia cordata Mill., Aesculus hippocastanum L., Spiraea×vanhouttei (Briot) Zabel. and Carpinus betulus L. are most represented among the researched species. The article presents the results of the assessment of heat resistance by using the method of Matskov (1976) of 13 ornamental woody and shrubby species. Besides, the plants were separated into groups of tolerance to high temperatures. It was established that the T. cordata plants are characterized by the highest indicators of heat tolerance and they can be recommended for the creation of open landscapes. The A. hippocastanum, Catalpa bignonioides Walt., S. vanhouttei and Forsythia europaea Degen & Bald. plants are characterized by ‘moderate tolerance’ indicators to high temperature stress, therefore they can be recommended for the creation of semi-open/open landscape types. Consequently, for the formation of semi-open landscapes, using the species Platanus occidentalis L., Quercus robur L., Q. rubra, Syringa vulgaris L., Berberis thunbergii DC. and Ligustrum vulgare L. which were assessed as ‘moderately sensitive’, is recommended. The leaves of the Carpinus betulus L. and Ribes aureum Pursh. plants were most vulnerable to high temperature stress; therefore, the species are recommended for the formation of closed landscape types. Despite the comparative classification of ornamental plants in terms of heat-resistance, many issues remain unstudied and need to be clarified in terms of ecology, physiology, biochemistry and phytopathology for the plants of urban green spaces.
Słowa kluczowe
Rocznik
Strony
145--153
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • National University of Life and Environmental Sciences of Ukraine, 03041, Heroiv Oborony st. 15, Kyiv, Ukraine
Bibliografia
  • 1. Adamenko T.V. 2007. Klimatychni umovy Ukrainy ta mozhlyvi naslidky poteplinnia klimatu. Ahronom, 1, 8–9.
  • 2. Barabash M.O., Kulbida M.V., Korzh T.I. 2004.Zmina hlobalnoho klimatu i problema opusteliuvannia Ukrainy. Naukovi zapysky Ternopilskoho DHP, 2, 82–88.
  • 3. Bita Craita E., Gerats T. 2013. Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. J. Frontiers in Plant Science. 4, 273 https://doi.org/10.3389/fpls.2013.00273
  • 4. Brune M. 2016. Urban trees under climate change. Potential impacts of dry spells and heat waves in three German regions in the 2050s. Report 24. Climate Service Center Germany, Hamburg.
  • 5. Camino C., Zarco-Tejada P.J., González-Dugo V. 2018. Effects of Heterogeneity within Tree Crowns on Airborne-Quantified SIF and the CWSI as Indicators of Water Stress in the Context of Precision Agriculture. Remote. Sens., 10, 604.
  • 6. Central Geophysical Observatory named after Boris Sreznevsky Retrieved from: http://cgo-sreznevskyi. kyiv.ua/index.php?fn=k_klimat&f=kyiv
  • 7. Christensen J.H., Christensen O.B. 2007. A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim. Change 81, 7–30. https://doi.org/10.1007/s10584-006-9210-7
  • 8. Gillner S., Bräuning A., Roloff A. 2014. Gillner, S., Bräuning, A., & Roloff, A. Dendrochronological analysis of urban trees: climatic response and impact of drought on frequently used tree species. Trees, 28, 1079–1093.
  • 9. Gonzalez-Dugoa V., Zarco-Tejadaa P.J., Bernia J.A., Suáreza L., Goldhamerb D., Fereresa E. 2011. Almond tree canopy temperature reveals intra-crown variability that is water stress-dependent. Agricultural and Forest Meteorology 154–155, 156–165. https://doi.org/10.1016/j.agrformet.2011.11.004.
  • 10. Intergovernmental Panel Climate Change (IPCC). 2007. Climate Change 2007: Impacts, Adaptation and Vulnerability: Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, U.K. and New York, NY.
  • 11. Hatfield J.L., Prueger J.H. 2015. Temperature extremes: Effect on plant growth and development, Weather and Climate Extremes, 10, 4-10.
  • 12. Wang J., Guo W., Wang C., Yao Y., Kou K., Xian D., Zhang Y. 2021. Tree crown geometry and its performances on human thermal comfort adjustment. Journal of Urban Management, 10(1), 16–26. https://doi.org/10.1016/j.jum.2021.02.001
  • 13. Kleerekoper L., van Esch M., Salcedo T.B. 2012: How to make a city climate-proof, addressing the urban heat island effect. Resources, Conservation and Recycling, 64, 30–38.
  • 14. Leshchenko O.I., Kolesnichenko O.V., Likhanov A.F. 2015. Diahnostyka zharostiikosti roslyn Lolium perenne L. vitchyznianoi selektsii. Lisove i sadovo-parkove hospodarstvo http://journals.nubip.edu.ua/index.php/Lis/article/view/9978/8878
  • 15. Matskov F.F. 1976. Raspoznavanye zhyvыkh, mertvыkh y povrezhdennыkh khlorofyllonosnыkh tkanei rastenyi po reaktsyy obrazovanyia feofetyna pry otsenke ustoichyvosty k эkstremalnыm vozdeistvyiam. Metodы otsenky ustoichyvosty rastenyi k neblahopryiatnыm uslovyiam sredы, L.: Kolos, S. 54–60.
  • 16. Matzarakis A., Amelung B. 2008. Physiological Equivalent Temperature as Indicator for Impacts of Climate Change on Thermal Comfort of Humans. In: M. C. Thomson, R. Garcia-Herrera, & M. Beniston (eds.): Seasonal Forecasts, Climatic Change and Human Health. New York: Springer, 161–172.
  • 17. NASA. Retrieved from https://climate.nasa.gov/evidence/
  • 18. Plant List. Retrieved from http://www.theplantlist.org/
  • 19. Popovych V., Stepova K., Telak O., Telak, J. 2021. Heat Resistance of Landfill Vegetation. Journal of Ecological Engineering, 22(1), 267–273. https://doi.org/10.12911/22998993/130022
  • 20. Potapenko Y.L. 2010. Drevesnыe rastenyia aboryhennoi florы v zelenom stroytelstve Vostochnoho raiona Yuzhnoho bereha Krыma. Эkosystemы, ykh optymyzatsyia y okhrana, 2, 30–41.
  • 21. Pui Kwan Cheung, C.Y. Jim. 2018. Comparing the cooling effects of a tree and a concrete shelter using PET and UTCI, Building and Environment, 130, 49–61 https://doi.org/10.1016/j.buildenv.2017.12.013.
  • 22. Rodychkyn Y.D. 1972. Stroytelstvo lesoparkov. SSSR, M.: Yzd-vo “Lesn. prom-st”.
  • 23. Salvucci M.E., Crafts-Brandner S.J. 2004. Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiol. Plant. 120, 179–186. https://doi.org/10.1111/j.0031-9317.2004.0173
  • 24. Savchenko G., Klyuchareva E., Abramchik L. and Serdyuchenko, E. 2002. Effect of periodic heat shock on the inner membrane system of etioplasts. Russ. J. Plant Physiol. 49, 349–359. https://doi.org/10.1023/A:1015592902659
  • 25. Trownbridge P., Bassuk N. 2004. Trees in the Urban Landscape: Site Assessment, design, and installation. Hoboken, N.J.: John Wiley.
  • 26. U.S. Environmental Protection Agency. 2008. Heat Island Effect. http://www.epa.gov/hiri/ [retrived on 15 July 2008].
  • 27. Vozhehova R.A., Netis I.T, Onufran L.I., Sakhatskyi H.I. 2021. Zmina klimatu ta problema arydyzatsii pivdennoho Stepu Ukrainy. Melioratsiia, Zemlerobstvo, Roslynnytstvo, 7, 16–20 https://doi.org/10.32848/agrar.innov.2021.7.3
  • 28. Wöhrle R.E., Wöhrle H.J. Bott C. 2017. Basics Designing with Plants, Berlin, Boston: Birkhäuser https://doi.org/10.1515/9783035612882
  • 29. Zipper Samuel C., Schatz J., Singh A., Kucharik, Christopher J., Townsend P.A., Loheide II S.P. 2016. Urban heat island impacts on plant phenology: intra-urban variability and response to land cover Environ. Res. Lett. 11, 054023. https://doi.org/10.1088/1748-9326/11/5/054023
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2b77ffd6-e152-4279-b551-4f8f0e036c6e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.