PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling and dynamic water analysis for the ecosystem service in the Central Citarum watershed, Indonesia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Exploring the drivers of changes in ecosystem services is crucial to maintain ecosystem functionality, especially in the diverse Central Citarum watershed. This study utilises the integrated valuation of ecosystem service and trade-offs (InVEST) model and multiscale geographically weighted regression (MGWR) model to examine ecosystem services patterns from 2006 to 2018. The InVEST is a hydrological model to calculate water availability and evaluate benefits provided by nature through simulating alterations in the amount of water yields driven by land use/cover changes. Economic, topographic, climate, and vegetation factors are considered, with an emphasis on their essential components. The presence of a geographical link between dependent and explanatory variables was investigated using a multiscale geographic weighted regression model. The MGWR model is employed to analyse spatial impacts. The integration of both models simplified the process and enhanced its understanding. The findings reveal the following patterns: 1) decreasing land cover and increasing ecosystem services demand in the watershed, along with a decline in water yield, e.g. certain sub-districts encounter water scarcity, while others have abundant water resources; 2) the impact of natural factors on water yield shifts along vegetation > climate > topography (2006) changes to climate > vegetation > topography (2018).
Wydawca
Rocznik
Tom
Strony
122--137
Opis fizyczny
Bibliogr. 47 poz., mapy, rys., tab.
Twórcy
  • Research Center for Limnology and Water Resources, National Research and Innovation Agency of Indonesia (BRIN), Jalan Raya Jakarta Bogor Km. 47 Cibinong, Bogor, West Java 16911, Indonesia
autor
  • Research Center for Limnology and Water Resources, National Research and Innovation Agency of Indonesia (BRIN), Jalan Raya Jakarta Bogor Km. 47 Cibinong, Bogor, West Java 16911, Indonesia
  • Research Center for Geoinformatics, National Research and Innovation Agency of Indonesia (BRIN), Jalan Raya Jakarta-Bogor Km. 47, Cibinong, Bogor, West Java 16911, Indonesia
autor
  • Research Center for Geoinformatics, National Research and Innovation Agency of Indonesia (BRIN), Jalan Raya Jakarta-Bogor Km. 47, Cibinong, Bogor, West Java 16911, Indonesia
autor
  • Research Center for Limnology and Water Resources, National Research and Innovation Agency of Indonesia (BRIN), Jalan Raya Jakarta Bogor Km. 47 Cibinong, Bogor, West Java 16911, Indonesia
  • Research Center for Geoinformatics, National Research and Innovation Agency of Indonesia (BRIN), Jalan Raya Jakarta-Bogor Km. 47, Cibinong, Bogor, West Java 16911, Indonesia
  • Research Center for Food Crops, National Research and Innovation Agency of Indonesia (BRIN), Jalan Raya Jakarta Bogor Km. 46, Cibinong, Bogor, West Java 16911, Indonesia
autor
  • Research Center for Geoinformatics, National Research and Innovation Agency of Indonesia (BRIN), Jalan Raya Jakarta-Bogor Km. 47, Cibinong, Bogor, West Java 16911, Indonesia
autor
  • Center for Research, Promotion and Cooperation, Geospatial Information Agency, Jalan Raya Jakarta-Bogor Km. 46, Cibinong, Bogor, West Java 16911, Indonesia
Bibliografia
  • Adiningrum, C. (2016) “Analisis perhitungan evapotranspirasi aktual terhadap perkiraan debit kontinyu dengan metode mock [Analysis of actual evapotranspiration calculations against continuous discharge estimates using the mock method],” Jurnal Teknik Sipil, 13(2), pp. 135–147. Available at: https://doi.org/10.24002/jts.v13i2.649.
  • Adnan, R.M. et al. (2023) “Improving drought modeling based on new heuristic machine learning methods,” Ain Shams Engineering Journal, 14(10), 102168. Available at: https://doi.org/10.1016/j.asej.2023.102168.
  • Al-Ghobari, H. and Dewidar, A.Z. (2021) “Integrating GIS-based MCDA techniques and the SCS-CN method for identifying potential zones for rainwater harvesting in a semi-arid area,” Water, 13(5), 704. Available at: https://doi.org/10.3390/w13050704.
  • Bai, L. et al. (2022) “The spatial differentiation and driving forces of ecological welfare performance in the Yangtze River Economic Belt,” International Journal of Environmental Research and Public Health, 19(22), 14801. Available at: https://doi.org/10.3390/ijerph192214801.
  • BMKG (2022) Data online – Pusat database – BMKG. Available at: https://dataonline.bmkg.go.id/home (Accessed: January 22, 2022).
  • Boithias, L. et al. (2014) “Assessment of the water supply: Demand ratios in a Mediterranean basin under different global change scenarios and mitigation alternatives,” Science of The Total Environment, 470–471, pp. 567–577. Available at: https://doi.org/10.1016/j.scitotenv.2013.10.003.
  • BPS (2022) Jawa Barat Province in Figures 2022. Badan Pusat Statistik Provinsi Jawa Barat. Available at: https://jabar.bps.go.id/publication.html (Accessed: January 23, 2022).
  • Cabral, P. et al. (2021) “Disentangling ecosystem services perception by stakeholders: An integrative assessment based on land cover,” Ecological Indicators, 126, 107660. Available at: https://doi.org/10.1016/j.ecolind.2021.107660.
  • Ellison, D., Futter, M.N. and Bishop, K. (2012) “On the forest cover–water yield debate: from demand- to supply-side thinking,” Global Change Biology, 18(3), pp. 806–820. Available at: https://doi.org/10.1111/j.1365-2486.2011.02589.x.
  • Fang, L. et al. (2021) “Identifying the impacts of natural and human factors on ecosystem service in the Yangtze and Yellow River Basins,” Journal of Cleaner Production, 314, 127995. Available at: https://doi.org/10.1016/j.jclepro.2021.127995.
  • FAO (2022) Harmonized world soil database v1.2. FAO Soils Portal. Rome: Food and Agriculture Organization of the United Nations. Available at: https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/ (Accessed: January 23, 2022).
  • Fotheringham, A.S., Yang, W. and Kang, W. (2017) “Multiscale Geographically Weighted Regression (MGWR),” Annals of the American Association of Geographers, 107(6), pp. 1247–1265. Available at: https://doi.org/10.1080/24694452.2017.1352480.
  • Fuhrer, J. and Jasper, K. (2012) “Demand and supply of water for agriculture: Influence of topography and climate in pre-alpine, mesoscale catchments,” Natural Resources, 03(03), pp. 145–155. Available at: https://doi.org/10.4236/nr.2012.33019.
  • Fulazzaky, M. (2014) “Challenges of integrated water resources management in Indonesia,” Water, 6(7), pp. 2000–2020. Available at: https://doi.org/10.3390/w6072000.
  • Geng, X. et al. (2014) “Land use/land cover change induced impacts on water supply service in the upper reach of Heihe River Basin,” Sustainability, 7(1), pp. 366–383. Available at: https://doi.org/10.3390/su7010366.
  • Habibie, M.I. et al. (2020) “Development of micro-level classifiers from land suitability analysis for drought-prone areas in Indonesia,” Remote Sensing Applications: Society and Environment, 20, 100421. Available at: https://doi.org/10.1016/j.rsase.2020.100421.
  • Harris, I., Osborn, T.J. and Lister, D.H. (2014) “Updated high-resolution grids of monthly climatic observations – The CRU TS3.10 Dataset,” International Journal of Climatology, 34(3), pp. 623–642. Available at: https://doi.org/10.1002/joc.3711.
  • Houska, T. (2012) “EarthExplorer,” General Information Product, 136. Reston, VA: U.S. Geological Survey. Available at: https://doi.org/10.3133/gip136.
  • Khafaji, M.S.A. et al. (2022) “Potential use of groundwater for irrigation purposes in the Middle Euphrates region, Iraq,” Sustainable Water Resources Management, 8(5), 157. Available at: https://doi.org/10.1007/s40899-022-00749-3.
  • Khan, S. et al. (2020) “A comprehensive index for measuring water security in an urbanizing world: The case of Pakistan’s capital”, Water, 12(1), 166. Available at: https://doi.org/10.3390/w12010166.
  • Lautenbach, S. et al. (2011) “Analysis of historic changes in regional ecosystem service provisioning using land use data,” Ecological Indicators, 11(2), pp. 676–687. Available at: https://doi.org/10.1016/j.ecolind.2010.09.007.
  • Li, R. et al. (2021) “The spatial relationship between ecosystem service scarcity value and urbanization from the perspective of heterogeneity in typical arid and semiarid regions of China,” Ecological Indicators, 132, 108299. Available at: https://doi.org/10.1016/j.ecolind.2021.108299.
  • Li, Z. and Fotheringham, A.S. (2020) “Computational improvements to multi-scale geographically weighted regression,” International Journal of Geographical Information Science, 34(7), pp. 1378–1397. Available at: https://doi.org/10.1080/13658816.2020.1720692.
  • Lian, X. et al. (2019) “Assessing changes of water yield in Qinghai Lake watershed of China,” Water, 12(1), 11. Available at: https://doi.org/10.3390/w12010011.
  • Liu, J. et al. (2017) “Water scarcity assessments in the past, present, and future,” Earth’s Future, 5(6), pp. 545–559. Available at: https://doi.org/10.1002/2016EF000518.
  • Nahib, I. et al. (2021) “Assessment of the impacts of climate and LULC changes on the water yield in the Citarum River Basin, West Java Province, Indonesia,” Sustainability, 13(7), 3919. Available at: https://doi.org/10.3390/su13073919.
  • Nahib, I. et al. (2023) “Spatial-temporal heterogeneity and driving factors of water yield services in Citarum river basin unit, West Java, Indonesia,” Archives of Environmental Protection, 49(1), pp. 3–24. Available at: https://doi.org/10.24425/aep.2023.144733.
  • Nivesh, S. et al. (2022) “Assessment of future water demand and supply using WEAP model in Dhasan River Basin, Madhya Pradesh, India,” Environmental Science and Pollution Research, 30(10), pp. 27289–27302. Available at: https://doi.org/10.1007/s11356-022-24050-0.
  • Ojeda Olivares, E.A. et al. (2019) “Climate change, land use/land cover change, and population growth as drivers of groundwater depletion in the Central Valleys, Oaxaca, Mexico,” Remote Sensing, 11(11), 1290. Available at: https://doi.org/10.3390/rs11111290.
  • Peng, J. et al. (2019) “Simulating the impact of Grain-for-Green Programme on ecosystem services trade-offs in Northwestern Yunnan, China,” Ecosystem Services, 39, 100998. Available at: https://doi.org/10.1016/j.ecoser.2019.100998.
  • Permatasari, R. et al. (2019) “Effects of watershed topography and land use on baseflow hydrology in upstream Komering South Sumatera, Indonesia”, Geomate Journal, 17(59), pp. 28–33. Available at: https://doi.org/10.21660/2019.59.4695.
  • Rajput, P. and Sinha, M.K. (2020) “Geospatial evaluation of drought resilience in sub-basins of Mahanadi river in India,” Water Supply, 20(7), pp. 2826–2844. Available at: https://doi.org/10.2166/ws.2020.178.
  • Redhead, J.W. et al. (2016) “Empirical validation of the InVEST water yield ecosystem service model at a national scale,” Science of The Total Environment, 569–570, pp. 1418–1426. Available at: https://doi.org/10.1016/j.scitotenv.2016.06.227.
  • Renard, D., Rhemtulla, J.M. and Bennett, E.M. (2015) “Historical dynamics in ecosystem service bundles,” Proceedings of the National Academy of Sciences, 112(43), pp. 13411–13416. Available at: https://doi.org/10.1073/pnas.1502565112.
  • Rong, Y. et al. (2022) “Multi-scale spatio-temporal analysis of soil conservation service based on MGWR model: A case of Beijing-Tianjin-Hebei, China,” Ecological Indicators, 139, 108946. Available at: https://doi.org/10.1016/j.ecolind.2022.108946.
  • Sulaeman, Y. et al. (2013) “Harmonizing legacy soil data for digital soil mapping in Indonesia”, Geoderma, 192, pp. 77–85. Available at: https://doi.org/10.1016/j.geoderma.2012.08.005.
  • Thadewald, T. and Büning, H. (2007) “Jarque–Bera Test and its competitors for testing normality – A power comparison,” Journal of Applied Statistics, 34(1), pp. 87–105. Available at: https://doi.org/10.1080/02664760600994539.
  • Uche, J. et al. (2015) “Environmental impact of water supply and water use in a Mediterranean water stressed region,” Journal of Cleaner Production, 88, pp. 196–204. Available at: https://doi.org/10.1016/j.jclepro.2014.04.076.
  • Vigerstol, K.L. and Aukema, J.E. (2011) “A comparison of tools for modeling freshwater ecosystem services,” Journal of Environmental Management, 92(10), pp. 2403–2409. Available at: https://doi.org/10.1016/j.jenvman.2011.06.040.
  • Vörösmarty, C.J. et al. (2000) “Global water resources: Vulnerability from climate change and population growth,” Science, 289(5477), pp. 284–288. Available at: https://doi.org/10.1126/science.289.5477.284.
  • Wang, D. et al. (2021) “A review of water stress and water footprint accounting”, Water, 13(2), 201. Available at: https://doi.org/10.3390/w13020201.
  • Wei, C. et al. (2022) “An alternative to the Grain for Green Program for soil and water conservation in the upper Huaihe River basin, China,” Journal of Hydrology: Regional Studies, 43, 101180. Available at: https://doi.org/10.1016/j.ejrh.2022.101180.
  • Zhang, G., Hoekstra, A.Y. and Mathews, R. (2013) “Water Footprint Assessment (WFA) for better water governance and sustainable development, editorial”, Water Resources and Industry, 1, pp. 1–6. Available at: https://doi.org/10.1016/j.wri.2013.06.004.
  • Zhang, J., Zhang, K. and Zhao, F. (2020) “Research on the regional spatial effects of green development and environmental governance in China based on a spatial autocorrelation model,” Structural Change and Economic Dynamics, 55, pp. 1–11. Available at: https://doi.org/10.1016/j.strueco.2020.06.001.
  • Zhang, X. et al. (2021) “Identifying the drivers of water yield ecosystem service: A case study in the Yangtze River Basin, China,” Ecological Indicators, 132, 108304. Available at: https://doi.org/10.1016/j.ecolind.2021.108304.
  • Zhao, X. et al. (2021) “A study on the relationship between supply-demand relationship of ecosystem services and impact factors in Gansu Province,” China Environmental Science, 41(10), pp. 4926–4941. Available at: https://doi.org/10.0000/j.zghjkx.1000-6923.20214117833.
  • Zou, Y. and Mao, D. (2021) “Analysis of water yield service of Lianshui River Basin in China based on ecosystem services flow model,” Water Supply, 22(1), pp. 335–346. Available at: https://doi.org/10.2166/ws.2021.265.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2b77b1ef-43f0-4a10-804d-88cad626593d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.