PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Direct current and pulsed direct current plasma nitriding of ferrous materials a critical review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nowadays, the improvement of ferrous materials performance is a problem of high interest. One of well-known wear- and corrosion properties improving technique is plasma nitriding, in which elemental nitrogen is introduced to the surface of a metal part for subsequent diffusion into the material. As a result, a compound, “white” layer and a diffusion zone are formed at the detail’s surface. Most of the authors positively describe the effects of surface ion nitiding. On the other hand, there are also reports on adverse effects of direct current and pulsed direct current plasma nitriding on ferrous materials performance. Therefore, an attempt to provide comprehensive summary on direct current and pulsed direct current ion nitriding and its influence on ferrous materials’ mechanical and corrosion properties has been made. According to the results, some of the technique drawbacks are hard to avoid in mass production.
Rocznik
Strony
150--158
Opis fizyczny
Bibliogr. 93 poz., rys., tab.
Twórcy
autor
  • Faculty of Mechanical Engineering, Department of Materials and Biomedical Engineering, Bialystok University of Technology, ul. Wiejska 45 C, 15-351 Bialystok, Poland
  • Faculty of Mechanical Engineering, Department of Materials and Biomedical Engineering, Bialystok University of Technology, ul. Wiejska 45 C, 15-351 Bialystok, Poland
Bibliografia
  • 1. Allenstein A.N., Lepienski C.M., Buschinelli A.A., Brunatto S.F. (2013), Plasma nitriding using high H2 content gas mixtures for a cavitation erosion resistant steel, Applied Surface Science, Vol. 277, 15-24.
  • 2. Alphonsa I., Chainani A., Raole P.M., Ganguli B., John P.I. (2002), A study of martensitic stainless steel AISI 420 modified using plasma nitriding, Surface and Coatings Technology, Vol. 150, 263- 268.
  • 3. Alves Jr. C., da Silva E.F., Martinelli A.E. (2001), Effect of workpiece geometry on the uniformity of nitrided layers, Surface and Coatings Technology, Vol. 139, 1-5.
  • 4. Alves Jr. C., de Araújo F.O., Ribeiro K.B., da Costa J.P., Sousa R.M., de Sousa R.S. (2006), Use of cathodic cage in plasma nitriding, Surface and Coatings Technology, Vol. 201, 2450-2454.
  • 5. Baldwin M.J., Fewell M.P., Haydon S.C., Kumar S., Collins G.A., Short K.T., Tendys J. (1998), Rf-plasma nitriding of stainless steel, Surface and Coatings Technology, Vol. 98, 1187-1191.
  • 6. Balusamy T., Sankara Narayanan T.N., Ravichandran K., Park I.S., Lee M.H. (2013), Plasma nitriding of AISI 304 stainless steel: Role of surface mechanical attrition treatment, Materials Characterization, Vol. 85, 38-47.
  • 7. Basu A., Majumdar J.D., Alphonsa J., Mukherjee S., Manna, I. (2008), Corrosion resistance improvement of high carbon low alloy steel by plasma nitriding, Materials Letters, Vol. 62, 3117-3120.
  • 8. Bell T. (2002), Surface engineering of austenitic stainless steel, Surface Engineering, Vol. 18, 415-422.
  • 9. Blawert C., Mordike B.L., Collins G.A., Short K.T., Tendys, J. (1998), Influence of process parameters on the nitriding of steels by plasma immersion ion implantation, Surface and Coatings Technology, Vol. 103-104, 240-247.
  • 10. Borges C.M., Hennecke S., Pfender E. (2000), Decreasing chromium precipitation in AISI 304 stainless steel during the plasmanitriding process, Surface and Coatings Technology, Vol. 123, 112-121.
  • 11. Borgioli F., Fossati A., Galvanetto E., Bacci T. (2005), Glowdischarge nitriding of AISI 316L austenitic stainless steel: influence of treatment temperature, Surface and Coatings Technology, Vol. 200, 2474-2480.
  • 12. Borgioli F., Fossati A., Galvanetto E., Bacci T., Pradelli G. (2006), Glow discharge nitriding of AISI 316L austenitic stainless steel: Influence of treatment pressure, Surface and Coatings Technology, Vol. 200, 5505-5513.
  • 13. Borowski T., Kamiński J., Trojanowski J., Wierzchoń T. (2010), Analysis of the structure and properties plasma nitrided 316L steel in different zones of plasma discharge (in polish), Archives of Machine Technology and Automatization, Vol. 30, 69-77.
  • 14. Brühl S.P., Charadia R., Simison S., Lamas D.G., Cabo A. (2010), Corrosion behavior of martensitic and precipitation hardening stainless steels treated by plasma nitriding, Surface and Coatings Technology, Vol. 204, 3280-3286.
  • 15. Corengia P., Traverso M.G., García Alonso-García D., Egidi D.A., Ybarra G., Moina C., Cabo A. (2004a), DC-Pulsed plasma nitriding of 4140: microstructure and topography, Matéria, Vol. 9, 111.
  • 16. Corengia P., Ybarra G., Moina C., Cabo A., Broitman E. (2004b), Microstructure and corrosion behaviour of DC-pulsed plasma nitrided AISI 410 martensitic stainless steel, Surface and Coatings Technology, Vol. 187, 63-69.
  • 17. Corengia P., Ybarra G., Moina C., Cabo A., Broitman E. (2005), Microstructural and topographical studies of DC-pulsed plasma nitrided AISI 4140 low-alloy steel, Surface and Coatings Technology, Vol. 200, 2391-2397.
  • 18. de Sousa R.M., de Araújo F.O., Ribeiro K.B., Mendes M.D., da Costa J.P., Alves Jr. C. (2007), Cathodic cage nitriding of DOI 10.1515/ama-2016-0024 acta mechanica et automatica, vol.10 no.2 (2016) 157 samples with different dimensions, Materials Science and Engineering A, Vol. 465, 223-227.
  • 19. de Sousa R.M., Moura Y.L., de Sousa P.O., Neto J.M., Costa T.C., Alves Jr. C. (2014), Nitriding of AISI 1020 Steel: Comparison Between Conventional Nitriding and Nitriding with Cathodic Cage, Materials Research, Vol. 17, 708-713.
  • 20. de Souza S.D., Olzon-Dionysio M., Basso R.O., de Souza S. (2010), Mössbauer spectroscopy study on the corrosion resistance of plasma nitrided ASTM F138 stainless steel in chloride solution, Materials Characterization, Vol. 61, 992-999.
  • 21. Díaz-Guillén J.C., Campa-Castilla A., Pérez-Aguilar S.I., GrandaGutiérrez E.E., Garza-Gómez A., Candelas-Ramírez J., MéndezMéndez R. (2009), Effect of duty cycle on surface properties of AISI 4340 using a pulsed plasma nitriding process, Superficies y Vacío, Vol. 22, 1-4.
  • 22. Díaz-Guillén J.C., Granda-Gutiérrez E.E., Vargas-Gutiérrez G., Díaz-Guillén M.R., Aguilar-Martínez J.A., Álvarez-Contreras L. (2015), Effect of Nitriding Current Density on the Surface Properties and Crystallite Size of Pulsed Plasma-Nitrided AISI 316L, Journal of Materials Science and Chemical Engineering, Vol. 3, 45-51.
  • 23. Dong H., Qi P.Y., Li X.Y., Llewellyn R.J. (2006), Improving the erosion–corrosion resistance of AISI 316 austenitic stainless steel by low-temperature plasma surface alloying with N and C, Materials Science and Engineering A, Vol. 431, 137-145.
  • 24. Fattah M., Mahboubi F. (2010), Comparison of ferritic and austenitic plasma nitriding and nitrocarburizing behavior of AISI 4140 low alloy steel, Materials and Design, Vol. 31, 3915-3921.
  • 25. Fernandes F.P., Heck S.C., Pereira R.G., Picon C.A., Nascente P.P., Casteletti L.C. (2010), Ion nitriding of a superaustenitic stainless steel: Wear and corrosion characterization, Surface and Coatings Technology, Vol. 204, 3087-3090.
  • 26. Foerster C.E., Serbena F.C., da Silva S.R., Lepienski C.M., de M. Siqueira C. J., Ueda M. (2007), Mechanical and tribological properties of AISI 304 stainless steel nitrided by glow discharge compared to ion implantation and plasma immersion ion implantation, Nuclear Instruments and Methods in Physics Research B, Vol. 257, 732-736.
  • 27. Fossati A., Borgioli F., Galvanetto E., Bacci T. (2006a), Corrosion resistance properties of glow-discharge nitrided AISI 316L austenitic stainless steel in NaCl solutions, Corrosion Science, Vol. 48, 1513- 1527.
  • 28. Fossati A., Borgioli F., Galvanetto E., Bacci T. (2006b), Glowdischarge nitriding of AISI 316L austenitic stainless steel: influence of treatment time, Surface and Coatings Technology, Vol. 200, 3511- 3517.
  • 29. Gallo S.C., Dong H. (2009), Study of active screen plasma processing conditions for carburising and nitriding austenitic stainless steel, Surface and Coatings Technology, Vol. 203, 3669-3675.
  • 30. Hudis M. (1973), Study of ion-nitriding, Journal of Applied Physics, Vol. 44, 1489-1496.
  • 31. Jeong B.Y., Kim M.H. (2001), Effects of pulse frequency and temperature on the nitride layer and surface characteristics of plasma nitrided stainless steel, Surface and Coatings Technology, Vol. 137, 249-254.
  • 32. Jeong B.Y., Kim M.H. (2001), Effects of the process parameters on the layer formation behavior of plasma nitrided steels, Surface and Coatings Technology, Vol. 141, 182-186.
  • 33. Karimzadeh N., Moghaddam E.G., Mirjani M., Raeissi K. (2013), The effect of gas mixture of post-oxidation on structure and corrosion behavior of plasma nitrided AISI 316 stainless steel, Applied Surface Science, Vol. 283, 584-589.
  • 34. Kliauga A.M., PohI M. (1998), Effect of plasma nitriding on wear and pitting corrosion resistance of X2CrNiMoN22-5-3 duplex stainless steel, Surface and Coatings Technology, Vol. 98, 1205-1210.
  • 35. Kurelo B.E., de Souza G.B., da Silva S.R., Serbena F.C., Foerster C.E., Alves Jr. C. (2015), Plasma nitriding of HP13Cr supermartensitic stainless steel, Applied Surface Science, Vol. 349, 403-414.
  • 36. Larisch B., Brusky U., Spies H. J. (1999), Plasma nitriding of stainless steels at low temperatures, Surface and Coatings Technology, Vol. 116–119, 205–211.
  • 37. Łępicka M., Grądzka-Dahlke M. (2013), Effect of Heat Treatment and Corrosion Resistance of AISI 440B Martensitic Stainless Steel, Acta Mechanica et Automatica, Vol. 7, 155-159.
  • 38. Łępicka M., Grądzka-Dahlke M. (2014), Effect of Plasma Nitriding Conditions on Corrosion Resistance of AISI 440B Martensitic Stainless Steel, Acta Mechanica et Automatica, Vol. 8, 156-159.
  • 39. Li C.X., Bell T. (2006), Corrosion properties of plasma nitrided AISI 410 martensitic stainless steel in 3.5% NaCl and 1% HCl aqueous solutions, Corrosion Science, Vol. 48, 2036-2049.
  • 40. Li G.J., Peng Q., Li C., Wang Y., Gao J., Chen S.Y., Shen B.L. (2008), Effect of DC plasma nitriding temperature on microstructure and dry-sliding wear properties of 316L stainless steel, Surface and Coatings Technology, Vol. 202, 2749-2754.
  • 41. Li Y., Wang L., Shen L., Zhang D., Wang C. (2010), Plasma nitriding of 42CrMo low alloy steels at anodic or cathodic potentials, Surface and Coatings Technology, Vol. 204, 2337-2342.
  • 42. Li Y., Wang Z., Wang L. (2014a), Surface properties of nitrided layer on AISI 316L austenitic stainless steel produced by high temperature plasma nitriding in short time, Applied Surface Science, Vol. 298, 243-250.
  • 43. Li Y., Xu H., Zhu F., Wang L. (2014b), Low temperature anodic nitriding of AISI 304 austenitic stainless steel, Materials Letters, Vol. 128, 231-234.
  • 44. Li Y., Zhang S., He Y., Zhang L., Wang L. (2014c), Characteristics of the nitrided layer formed on AISI 304 austenitic stainless steel by high temperature nitriding assisted hollow cathode discharge, Materials and Design, Vol. 64, 527-534.
  • 45. Liang W. (2003), Surface modification of AISI 304 austenitic stainless steel by plasma nitriding, Applied Surface Science, Vol. 211, 308-314.
  • 46. Liang W., Juncai S., Xiaolei X. (2001), Low pressure plasma arc source ion nitriding compared with glow-discharge plasma nitriding of stainless steel, Surface and Coatings Technology, Vol. 145, 31-37.
  • 47. Mashreghi A.R., Soleimani S.Y., Saberifar S. (2013), The investigation of wear and corrosion behavior of plasma nitrided DIN 1.2210, Materials and Design, Vol. 46, 532-538.
  • 48. Menthe E., Bulak A., Olfe J., Zimmermann A., Rie K.T. (2000), Improvement of the mechanical properties of austenitic stainless steel after plasma nitriding, Surface and Coatings Technology, Vol. 133-134, 259-263.
  • 49. Menthe E., Rie K.T. (1999), Further investigation of the structure and properties of austenitic stainless steel after plasma nitriding, Surface and Coatings Technology, Vol. 116-119, 199–204.
  • 50. Menthe E., Rie K.T., Schultze J.W., Simson S. (1995), Structure and properties of plasma-nitrided stainless steel, Surface and Coatings Technology, Vol. 74-75, 412-416.
  • 51. Michler T. (2008), Influence of plasma nitriding on hydrogen environment embrittlement of 1.4301 austenitic stainless steel, Surface and Coatings Technology, Vol. 202, 1688-1695.
  • 52. Mingolo N., Tschiptschin A.P., Pinedo C.E. (2006), On the formation of expanded austenite during plasma nitriding of an AISI 316L austenitic stainless steel, Surface and Coatings Technology, Vol. 201, 4215-4218.
  • 53. Miola E.J., de Souza S.D., Olzon-Dionysio M., Spinelli D., dos Santos C.A. (1999), Nitriding of H-12 tool steel by direct-current and pulsed plasmas, Surface and Coatings Technology, Vol. 116-119, 347-351.
  • 54. Musil J., Vlcek J., Ruzicka M. (2000), Recent progress in plasma nitriding, Vacuum, Vol. 59, 940-951.
  • 55. O’Brien J.M., Goodman D. (1991), Heat treating, plasma (ion) nitriding, 240-242, in: Davis W.J.R., Metals Handbook. 9th ed., Vol. 4, ASM, Ohio.
  • 56. Ochoa E.A., Figueroa C.A., Alvarez F. (2005), The influence of the ion current density on plasma nitriding process, Surface and Coatings Technology, Vol. 200, 2165-2169. Magdalena Łępicka, Małgorzata Grądzka-Dahlke DOI 10.1515/ama-2016-0024 Direct Current and Pulsed Direct Current Plasma Nitriding of Ferrous Materials – a Critical Review 158
  • 57. Olzon-Dionysio M., Campos M., Kapp M., de Souza S., de Souza S.D. (2010), Influences of plasma nitriding edge effect on properties of 316L stainless steel, Surface and Coatings Technology, Vol. 204, 3623-3628.
  • 58. Olzon-Dionysio M., de Souza S.D., Basso R.O., de Souza S. (2008), Application of Mössbauer spectroscopy to the study of corrosion resistance in NaCl solution of plasma nitrided AISI 316L stainless steel, Surface and Coatings Technology, Vol. 202, 3607- 3614.
  • 59. Pinedo C.E., Monteiro W.A. (2004), On the kinetics of plasma nitriding a martensitic stainless steel type AISI 420, Surface and Coatings Technology, Vol. 179, 119–123.
  • 60. Podgornik B., Vizintin J., Leskovsek V. (1998), Tribological properties of plasma and pulse plasma nitrided AISI 4140 steel, Surface and Coatings Technology, Vol. 108-109, 454-460.
  • 61. Psyllaki P.P., Griniari A., Pantelis D.I. (2008), Parametric study on laser nitriding of 1.5919 steel, Journal of Materials Processing Technology, Vol. 195, 299-304.
  • 62. Pye D. (2003), Practical Nitriding and Ferritic Nitrocarburizing, ASM International, Materials Park.
  • 63. Raman S.S., Jayaprakash M. (2007), Influence of plasma nitriding on plain fatigue and fretting fatigue behaviour of AISI 304 austenitic stainless steel, Surface and Coatings Technology, Vol. 201, 5906- 5911.
  • 64. Ribeiro K.B., de Sousa R.M., de Araújo F.O., de Brito R.A., Barbosa J.P., Alves Jr. C. (2008), Industrial application of AISI 4340 steels treated in cathodic cage plasma nitriding technique, Materials Science and Engineering A, Vol. 479, 142–147.
  • 65. Saeed A., Khan A.W., Jan F., Abrar M., Khalid M. Zakaullah M. (2013), Validity of “sputtering and re-condensation” model in active screen cage plasma nitriding process, Applied Surface Science, Vol. 273, 173–178.
  • 66. Saklakoglu I.E., Saklakoglu N., Short K.T., Collins G.A. (2007), Characterization of austenitic stainless steel after plasma immersion nitrogen and carbon implantation, Materials and Design, Vol. 28, 1657-1663.
  • 67. Sharma M.K., Saikia B.K., Phukan A., Ganguli B. (2006), Plasma nitriding of austenitic stainless steel in N2 and N2–H2 dc pulsed discharge, Surface and Coatings Technology, Vol. 201, 2407-2413.
  • 68. Singh G.P., Alphonsa J., Barhai P.K., Rayjada P.A., Raole P.M., Mukherjee S. (2006), Effect of surface roughness on the properties of the layer formed on AISI 304 stainless steel after plasma nitriding, Surface and Coatings Technology, Vol. 200, 5807–5811.
  • 69. Sirin S. Y., Sirin K., Kaluc E. (2008), Effect of the ion nitriding surface hardening process on fatigue behavior of AISI 4340 steel, Materials Characterization, Vol. 59, 351-358.
  • 70. Sirin S.Y., Kaluc E. (2012), Structural surface characterization of ion nitrided AISI 4340 steel, Materials and Design, Vol. 36, 741-747.
  • 71. Skolek-Stefaniszyn E., Kaminski J., Sobczak J., Wierzchon T. (2010), Modifying the properties of AISI 316L steel by glow discharge assisted low-temperature nitriding and oxynitriding, Vacuum, 85, 164- 169.
  • 72. Sobiecki J. R., Mańkowski P., Patejuk A. (2004), Improving the performance properties of valve martensitic steel by glow dischargeassisted nitriding, Vacuum, Vol. 76, 57-61.
  • 73. Soleimani S.Y., Mashreghi A.R., Ghasemi S.S., Moshrefifar M. (2012), The effect of plasma nitriding on the fatigue behavior of DIN 1.2210 cold work tool steel, Materials and Design, Vol. 35, 87-92.
  • 74. Soltani Asadi Z., Mahboubi A. (2012), Effect of component’s geometry on the plasma nitriding behavior of AISI 4340 steel, Materials and Design, Vol. 34, 516-521.
  • 75. Sun Y., Bell T. (1998), Sliding wear characteristics of low temperature plasma nitrided 316 austenitic stainless steel, Wear, Vol. 218, 34-42.
  • 76. Szabo A., Wilhelmi H. (1984), The mechanisms of nitriding of steel surfaces in a D. C. glow discharge, Haerterei Technische Mitteilungen, Vol. 39, 148-151.
  • 77. Szilágyiné Biró A. (2013), Trends of Nitriding Processes, Production Processes and Systems, Vol. 6, 57-66.
  • 78. Tibbetts G. G. (1974), Role of nitrogen atoms in “ion-nitriding”, Journal of Applied Physics, Vol. 45, 5072-5073.
  • 79. Toshkov V., Russev R., Madjarov T., Russeva E. (2007), On low temperature ion nitriding of austenitic stainless steel AISI 316, Journal of Acheivements in Materials and Manufacturing Engineering, Vol. 25, 71-74.
  • 80. Tuckart W., Forlerer E., Iurman L. (2007), Delayed cracking in plasma nitriding of AISI 420 stainless steel, Surface and Coatings Technology, Vol. 202, 199–202.
  • 81. Wang J., Xiong J., Peng Q., Fan H., Wang Y., Li G., Shen B. (2009), Effects of DC plasma nitriding parameters on microstructure and properties of 304L stainless steel, Materials Characterization, Vol. 60, 197-203.
  • 82. Wang L., Ji S., Sun J. (2006), Effect of nitriding time on the nitrided layer of AISI 304 austenitic stainless steel, Surface and Coatings Technology, Vol. 200, 5067-5070.
  • 83. Wang L., Ji S., Sun J. (2006), Effect of nitriding time on the nitrided layer of AISI 304 austenitic stainless steel, Surface and Coatings Technology, Vol. 200, 5067-5070.
  • 84. Wang S., Cai W., Li J., Wei W., Hu J. (2013), A novel rapid D.C. plasma nitriding at low gas pressure for 304 austenitic stainless steel, Materials Letters, Vol. 105, 47–49.
  • 85. Weber T., de Wit L., Saris F.W., Koniger A., Rauschenbach B., Wolf G.K., Krauss S. (1995), Hardness and corrosion resistance of single-phase nitride and carbide on iron, Materials Science and Engineering A, Vol. 199, 205-210.
  • 86. Wen D.C. (2009), Plasma nitriding of plastic mold steel to increase wear- and corrosion properties, Surface and Coatings Technology, Vol. 204, 511–519.
  • 87. Wierzchoń T., Psoda M., Skołek E., Rudnicki J., Sobiecki J.R. (2006), Glow discharge assisted nitriding of chromium steel 3H13, Maintenance Problems, Vol. 2, 53-64.
  • 88. Winck L.B., Ferreira J.A., Araujo J.A., Manfrinato M.D., da Silva C.M. (2013), Surface nitriding influence on the fatigue life behavior of ASTM A743 steel type CA6NM, Surface and Coatings Technology, Vol. 232, 844-850.
  • 89. Wu K., Liu G.Q., Wang L., Xu B.F. (2010), Research on new rapid and deep plasma nitriding techniques of AISI 420 martensitic stainless steel, Vacuum, 870-875.
  • 90. Xi Y.T., Liu D.X., Han D. (2008a), Improvement of corrosion and wear resistances of AISI 420 martensitic stainless steel using plasma nitriding at low temperature, Surface and Coatings Technology, Vol. 202, 2577-2583.
  • 91. Xi Y.T., Liu D.X., Han D. (2008b), Improvement of erosion and erosion–corrosion resistance of AISI 420 stainless steel by low temperature plasma nitriding, Applied Surface Science, Vol. 254, 5953-5958.
  • 92. Xu B., Zhang Y. (1986), Collision dissociation model in ion-nitriding, 5 th International Congress on Heat Treatment of Materials, 1086- 1093.
  • 93. Zlatanović M., Popović I. (2010), Gas discharge static characteristics in pulse regime, Contemporary Materials, Vol. 1, 138- 143.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2b763cfe-faa7-4baa-a238-cac9db6e7737
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.