PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Neoproterozoic ophiolite exotic blocks in the Outer Western Carpathians, southern Poland : a record of the fast ocean-floor cooling and alterations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ophiolitic blocks, represented by metagabbro and serpentinite containing relict pyroxene, olivine, baddeleyite, zirconolite, Ni-pyrite and pyrrhotite, were found as exotic blocks in an olistostrome in the Magura Nappe, Outer Western Carpathians. The geochemical and isotopic features of the blocks suggest they represent mantle-derived rocks, with within-plate geochemistry signatures, modified by subduction, with lithospheric mantle input. A U-Pb apatite cooling age (614 ±3 Ma) is within age uncertainty of a published U-Pb zircon magmatic crystallization age (~614 Ma) implying rapid post-crystallization cooling. Pervasive alteration with replacement of primary minerals by low-temperature assemblages is observed in all rock fragments and is interpreted as contemporaneous with shearing. The secondary mineral assemblages and temperature modelling allow the interpretation that the pervasive ocean-floor metamorphism is the alteration in these meta-mafic rocks. These ophiolitic fragments can be linked to the Neoproterozoic break up of Rodinia/Pannotia.
Rocznik
Strony
art. no. 9
Opis fizyczny
Bibliogr. 89 poz., rys., tab., wykr.
Twórcy
  • University of Silesia, Institute of Earth Sciences, Będzińska 60, 41-200 Sosnowiec, Poland
  • University of Silesia, Institute of Earth Sciences, Będzińska 60, 41-200 Sosnowiec, Poland
  • Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Al. Mickiewicza 30, 20-059 Kraków, Poland
autor
  • Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Al. Mickiewicza 30, 20-059 Kraków, Poland
  • University of Silesia, Institute of Earth Sciences, Będzińska 60, 41-200 Sosnowiec, Poland
  • M.P. Semenenko Institute of Mineralogy, Geochemistry and Ore Formation of the National Academy of Sciences of Ukraine, Palladina 34, Kyiv-142, Ukraine
Bibliografia
  • 1. Anczkiewicz, R., Cieszkowski, M., Szczęch, M., Ślączka, A., Wolska, A., 2016. Ophiolite from Osielec - Magura Nappe, Outer Carpathians, Poland - a new approach to the problem. In: Environmental, Structural and Stratigraphical Evolution of the Western Carpathians n(ed. M. Šujan): 10th ESSE WECA Con-ference, 10th ESSEWECA Conference, December 1-2, 2016, Abstract Book: 9-10. Comenius University in Bratislava.
  • 2. Bailey, S.W., 1980. Structures of layer silicates: in crystal structures of clay minerals and their X-ray identification. Mineralogical Society, London.
  • 3. Bónová, K., Bóna, J., Kovačik, M., Mikuš, T., 2018. Heavy minerals and exotic pebbles from the Eocene flysch deposits of the Magura Nappe (Outer Western Carpathians, Eastern Slovakia): their composition and implications on the provenance. Turkish Journal of Earth Sciences, 27: 64-88; https://doi.org/10.3906/yer-1707-9
  • 4. Budzyń, B., Dunkley, D.J., Kusiak, M.A., Poprawa, P., Malata, T., Skiba, M., Paszkowski, M., 2011. SHRIMP U-Pb zircon chronology of the Polish Western Outer Carpatians source areas. Annales Societatis Geologorum Poloniae, 81: 161-17.
  • 5. Burda, J., Woskowicz-Ślęzak, B., Klötzli, U., Gawęda, A., 2019. Cadomian protolith ages of exotic mega blocks from Bugaj and Andrychów (Western Outer Carpathians, Poland) and their palaeogeographic significance. Geochronometria, 46: 25-36; https://doi.org/10.1515/geochr-2015-0102
  • 6. Cabanis, B., Lecolle, M., 1989. Le diagramme La/10-Y/15-Nb/8: Un outil pour la discrimination des series volcaniques et en evidence des mélange et la mise en ev idence des processus de mélange et/ou de contamination crustale. Comptes Rendus de l'Académie des Sciences, 309: 2023-2029.
  • 7. Cannat, M., 1993. Emplacement of the mantle rocks in the sea floor at mid-ocean ridges. Journal of Geophysical Research, 98: 4163-4172; https://doi.org/10.1029/92JB02221
  • 8. Cathelineau, M., Nieva, D., 1985. A chlorite solid solution geothermometer. The Los Azufres (Mexico) geothermal system: Contribution to Mineralogy and Petrology, 91: 235-244; https://doi.org/10.1007/BF00413350
  • 9. Chew, D.M., Petrus, J.A., Kamber, B.S., 2014. U-Pb LA-ICPMS dating using accessory mineral standards with variable common Pb. Chemical Geology, 363: 185-199; https://doi.org/10.1016/j.chemgeo.2013.11.006
  • 10. Chew, D., Babechuk, M.G., Cogne, M., Mark, C., O'Sullivan, G.J., Henrichs, I.A., Doepke, D., McKenna, C.A., 2016. (LA,Q)-ICPMS trace element analyses of Durango and McClure Mountain apatite and implications for making natural LA-ICPMS mineral standard. Chemical Geology, 435: 35-48; https://doi.org/10.1016/j.chemgeo.2016.03.028
  • 11. Cieszkowski, M., Kysiak, T., Ślączka, A., Wolska, A., 2010. Olistoliths of gabbro from Osielec (Magura Nappe, Outer Carpathians, Poland). Mineralia Slovaka, 42: 507-508; https://doi.org/10.7306/gq.1292
  • 12. Cieszkowski, M., Golonka, J., Ślączka, A., Waśkowska, A., 2012. Role of the olistostromes and olistoliths in tectonostratigraphic evolution of the Silesian Basin in the Outer Carpathians. Tectonophysics, 568-569: 248-265; https://doi.org/10.1016/j.tecto.2012.01.030
  • 13. Cieszkowski, M., Kysiak, T., Szczęch, M., Wolska, A., 2017. Geology of the Magura Nappe in the Osielec area with emphasis on an Eocene olistostrome with metabasite olistoliths (Outer Carpathians, Poland). Annales Societatis Geologorum Poloniae, 87: 169-182; https://doi.org/10.14241/asgp.2017.009
  • 14. Cochrane, R., Spikings, R.A., Chew, D., Wotzlaw, J.-F., Chiaradia, M., Tyrrell, S., Schaltegger, U., Van der Lelijl, R., 2014. High temperature (>350°C) thermochronology and mechanisms of Pb loss in apatite. Geochimica et Cosmochimica Acta, 127: 39-56; https://doi.org/10.1016/j.gca.2013.11.028
  • 15. Costa, F., Dungan, M.A., Singer, B.S., 2002. Hornblende- and phlogopite-bearing gabbroic xenoliths from Volcán San Pedro (36°S), Chilean Andes: Evidence for melt and fluid migration and reactions in subduction-related plutons. Journal of Petrology, 43: 219-241; https://doi.org/10.1093/petrology/43.2.219
  • 16. Degen, T., Sadki, M., Bron, E., König, U., Nénert, G., 2014. The HighScore suite. Powder Diffraction, 29(S2): S13-S18; https://doi.org/10.1017/S0885715614000840
  • 17. Dewey, J.F., 1977. Suture zone complexities: a review. Tectono- physics, 40: 53-67; https://doi.org/10.1016/0040-1951(77)90029-4
  • 18. Dewey, J.F., 2005. Orogeny can be very short. Proceedings of the National Academy of Sciences USA, 102: 15286-15293; https://doi.org/10.1073/pnas.0505516102
  • 19. Dobretsov, N.L., Buslov, M.M., Vernikovsky, V.A. 2003. Neoproterozoic to Early Ordovician evolution of the Paleo-Asian Ocean: implications to the break-up of Rodinia. Gondwana Research, 6: 143-15; https://doi.org/10.1016/S1342-937X(05)70966-7
  • 20. Evans, B.W., Johannes, W., Otterdoom, H., Trommsdorff, V., 1976. Stability of chrysotile and antigorite in the serpentine multi-system. Schweizerische Mineralogische Petrographische Mitteilungen, 56: 79-93.
  • 21. Festa, A., Dilek, Y., Gawlick, H.-J., Missoni, S., 2014. Mass-transport deposits, olistostromes and soft sediment defromation in modern and ancient continental margins, and associated natural hazards. Marine Geology, 356: 1-4; https://doi.org/10.1016/j.margeo.2014.09.001
  • 22. Fitton, J.G., 2007. The OIB paradox. GSA Special Papers, 430: 387-412; https://doi.org/10.1130/2007.2430(20)
  • 23. Gawęda, A., Golonka, J., 2011. Variscan plate dynamics in the circum-Carpathian area. Geodinamica Acta, 24: 141-155; https://doi.org/10.3166/ga.24.141-155
  • 24. Gawęda, A., Winchester, J.A., Kozłowski, K., Narębski,W., Holland, G., 2000. Geochemistry and paleotectonic setting of the amphibolites from the Western Tatra Mountains. Geological Journal, 35: 69-85; https://doi.org/10.1002/1099-1034(200004/06)35:2<69::AID-GJ838>3.0.CO;2-V
  • 25. Gawęda, A., Burda, J., Golonka, J., Klötzli, U., Chew, D., Szopa, K., Wiedenbeck, M., 2017. The evolution of Eastern Tornquist-Paleoasian Ocean and subsequent continental collisions: a case study from the Western Tatra Mountains, Central Western Carpathians (Poland). Gondwana Research, 48: 134-152; https://doi.org/10.1016/j.gr.2017.04.021
  • 26. Gawęda, A., Golonka, J., Waśkowska, A., Szopa,, K., Chew, D., Starzec, K., Wieczorek, A., 2019. Neoproterozoic crystalline exotic clasts in the Polish Outer Carpathian flysch - remnants of the Proto-Carpathian continent? International Journal of Earth Sciences,108: 1409-1427; https://doi.org/10.1007/s00531-019-01713-x
  • 27. Gawęda, A., Golonka, J., Chew, D., Waśkowska, A., Szopa, K., 2021. Central European Variscan basement in the Outer Carpathians: A case study from the Magura Nappe, Outer Western Carpathians, Poland. Minerals, 11: 256; https://doi.org/10.3390/min11030256
  • 28. Gibson, I.L., Beslier, M.-O., Cornen, G., Milliken, K.L., Seifert, K.E., 1996. Major- and trace-element seawater alteration profiles in serpentinite formed during the development of the Iberia margin, site 8971. Proceedings of the Ocean Drilling Program, Scientific Results, 149: 519-527; https://doi.org/10.2973/odp.proc.sr.149.219.1996
  • 29. Gladkochub, D.P., Stanevich, A.M., Mazukabzov, A.M., Donskaya, T.V., Pisarevsky, S.A., Nicoll, G., Motova, Z.L., Kornolova, T.A., 2013. Early evolution of the Paleoasian Ocean: LA-ICP-MS dating of detrital zircon from Late Precambrian sequences of the southern margin of the Siberian craton. Russian Geology and Geophysics, 54: 1150-1163; https://doi.org/10.1016/j.rgg.2013.09.002
  • 30. Golonka, J., Gawęda, A., 2012. Plate Tectonic Evolution of the Southern Margin of Laurussia in the Paleozoic. In: Tectonics - Recent Advances (ed. E. Sharkov), ISBN 978-953-51-0675-3 In-Tech-Open: 261-282; https://doi.org/10.3166/ga.24.141-155
  • 31. Golonka, J., Waśkowska, A., 2012. The Beloveža Formation of the Raca Unit in the Beskid Niski Mts. (Magura Nappe, Polish Flysch Carpathians) and adjacent parts of Slovakia and their equivalents in the western part of the Magura Nappe; remarks on the Beloveža Formation - Hieroglyphic Beds controversy. Geological Quarterly, 56: 821-832; https://doi.org/10.7306/gq.1057
  • 32. Golonka, J., Krobicki, M., Matyszkiewicz, J., Olszewska, B., Ślączka, A., Słomka, T., 20O5. Geodynamics of ridges and development of carbonate platform within the Carpathian realm in Poland. Slovak Geological Magazine, 11: 5-16.
  • 33. Golonka, J., Waśkowska, A., Ślączka, A., 2019. The Western Outer Carpathians: Origin and evolution. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 170: 229-254; https://doi.org/10.1127/zdgg/2019/0193
  • 34. Golonka, J., Gawęda, A., Waśkowska, A., 2021. Carpathians. In: Encyclopedia of Geology (eds. D. Alderton and S.A. Elias), 2nd edition vol. 4: 372-381; https://doi.org/10.1016/B978-0-12-409548-9.12384-X
  • 35. Gumsley, A., Manby, G., Domańska-Siuda, J., Nejbert, K., Michalski, K., 2020. Caught between two continents: first identification of the Ediacaran Central Iapetus Magmatic Province in Western Svalbard with palaeogeographic implications during final Rodinia breakup. Precambrian Research, 341: 105622; https://doi.org/10.1016/j.precamres.2020.105622
  • 36. Honnorez, J., 2003. Hydrothermal alteration vs. ocean-floor metamorphism. A comparison between two case histories: the TAG hydrothermal mound (Mid-Atlantic Ridge) vs. DSDP/ODP Hole 504B (Equatorial East Pacific). Comptes Rendus Geosciences, 335: 781-824; https://doi.org/10.1016/j.crte.2003.08.009
  • 37. Jowett, E., 1991. Fitting iron and magnesium into the hydrothermal chlorite geothermometer. In: Proceedings of the GAC/MAC/SEG Joint Annual Meeting, Toronto, Canada, May 27-29, 1991, 16: A62.
  • 38. Kheraskova, T.N., Bush, V.A., Didenko, A.N., Samygin, S.G., 2010. Breakup of Rodinia and early stages of evolution of the Paleoasian ocean. Geotectonics, 44: 3-24; https://doi.org/10.1134/S0016852110010024
  • 39. Kheraskova, T.N., Volozh Y.A., Antipov, M.P., Bykadorov, V.A., Sapozhnikov R.B., 2015. Correlation of Late Precambrian and Paleozoic events in the East European platform and the adjacent paleooceanic domains: Geotectonics, 49/1: 27-52; https://doi.org/10.1134/S0016852115010021
  • 40. Kováč, M., Plašienka, D., Soták, J., Vojtko, R., Oszczypko, N., Less, G., Králiková, S., 2016. Paleogene palaeogeography and basin evolution of the Western Carpathians, Northern Pannonian domain and adjoining areas. Global and Planetary Change, 140: 9-27; https://doi.org/10.1016/j.gloplacha.2016.03.007
  • 41. Kranidiotis, P., MacLean, W.H., 1987. Systematics of chlorite alteration at the Phelps Dodge massive sulfide deposit, Matagami, Quebec. Economic Geology, 82: 1898-1911; https://doi.org/10.2113/gsecongeo.82.7.1898
  • 42. Krestianinov, E., Amelin, Y., Neymark, L.A., Aleinikoff, J.N., 2021. U-Pb systematics of uranium-rich apatite from Adirondacks: inferences about regional geological and geochemical evolution, and evaluation of apatite reference materials for in situ dating. Chemical Geology, 20: 120417; https://doi.org/10.1016/j.chemgeo.2021.120417
  • 43. Książkiewicz, M., 1975. Bathymetry of the Carpathian flysch basin. Acta Geologica Polonica 25: 309-368.
  • 44. Książkiewicz, M., 1977. Hypothesis of plate tectonics and the origin of the Carpathians, Annales Societatis Geologorum Poloniae, 47: 329-353.
  • 45. Kysiak, T., 2010. Gabbro exotic rocks from the Raca Subunit of the Magura Nappe, West Outer Carpathians, Poland. In: 1st Students International Geological Conference, April 16-19, 2010, Kraków, Poland, p. 28.
  • 46. Leake, B.E., Woolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthorn, F.C., Kao, A., Kisch, H.J., Krivovichev, V.G., Linthout, K., Laird, J., Mandarino, J.A., Maresch, W.V., Nickel, E.H., Rock, N.M.S., Schumacher, J.C., Smith, D.C., Stephenson, N.C.N., Ungaretti, L., Whittaker, E.J.W., Youzhi, G., 1998. Nomenclature of amphiboles: report of the subcommittee of amphiboles of the International Mineralogical Association, Commission on new minerals and mineral names. Canadian Mineralogist, 35: 219-246.
  • 47. Liew, T.C., Hofmann, A.W., 1988. Precambrian crustal components, plutonic associations, plate environment of the Hrcynian Fold Belt of Central Europe: Indications from a Nd and Sr isotopic study. Contributions to Mineralogy and Petrology, 98: 129-138;https://doi.org/10.1007/BF00402106
  • 48. Márton, E., 2020. Last scene in the large scale rotations of the Western Carpathians as reflected in paleomagnetic constraints. Geology, Geophysics and Environment, 46: 109-133; https://doi.org/10.7494/geol.2020.46.2.109
  • 49. Márton, E., Grabowski, J., Tokarski, A.K., Túnyi, I., 2015. Palaeomagnetic results from the fold and thrust belt of the Western Carpathians: an overview. Geological Society Special Publications, 425: 7-36; https://doi.org/10.1144/SP425.1
  • 50. McDonough, W.F., Sun, S.S., 1995. The composition of the Earth. Chemical Geology, 120: 223-253; https://doi.org/10.1016/0009-2541(94)00140-4
  • 51. Mével, C., 2003. Serpentinization of abyssal peridotites at mid-ocean ridges. Comptes Rendus Geosciences, 335: 825-852; https://doi.org/10.1016/j.crte.2003.08.006
  • 52. Moscardelli, L., Wood, L., 2007. New classification system for mass transport complexes in offshore Trinidad. Basin Research, 20: 73-98; https://doi.org/10.1111/j.1365-2117.2007.00340.x
  • 53. Murphy, J.B., Nance, R.D., Cawood, P.A., Collins, W.J., Dan, W., Doucet, L.S., Heron, P.J., Li, Z.-X., Mitchell, R.N., Pisarevsky, S., Pufahl, P.K., Quesada, C., Spencer, C.J., Strachan, R.A., Wu, L., 2021. Pannotia: in defence of its existence and geodynamic significance. Geological Society Special Publications, 503: 13; https://doi.org/10.1144/SP503-2020-213
  • 54. Ogata, K., Mutti, E., Pini, G.A., Tinterri, R., 2012. Mass transport-related stratal disruption within sedimentary mélanges: examples from the northern Apennines (Italy) and south-central Pyrenees (Spain). Tectonophysics, 568: 185-199; https://doi.org/10.1016/j.tecto.2011.08.021
  • 55. Oszczypko, N., 2010. Late Jurassic-Miocene evolution of the Outer Carpathian fold-and-thrust belt and its foredeep basin (Western Carpathians, Poland). Geological Quarterly, 50: 169-194.
  • 56. Paton, C., Hellstrom, J., Paul, B., Woodhead, J., Hergt, J., 2011. Iolite: freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectroscopy, 26: 2508-2518; https://doi.org/10.1039/C1JA10172B
  • 57. Paul, A.N., Spikings, R.A., Gaynor, S.P., 2021. U-Pb ID-TIMS reference ages and initial Pb isotope compositions for Durango and Wilberforce apatites. Chemical Geology, 586: 120604; https://doi.org/10.1016/j.chemgeo.2021.120604
  • 58. Pearce, J.A., 1982. Trace element characteristics of lavas from destructive plate boundaries. In: Andesites (ed. R.S. Thorpe): 525-547. Chichester, JohnWiley.
  • 59. Pearce, J.A., 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100: 14-48; https://doi.org/10.1016/j.lithos.2007.06.016
  • 60. Pearce, J.A., Norry, M.J., 1979. Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology, 69: 33-47; https://doi.org/10.1007/BF00375192
  • 61. Pearce, J.A., Ernst, R.E., Peate, D.W., Rogers, C., 2021. LIP printing: Use of immobile element proxies to characterize Large Igneous Provinces in the geologic record. Lithos, 392-393: 106068; https://doi.org/10.1016/j.lithos.2021.106068
  • 62. Petrus, J.A., Kamber, B.S. 2012. VizualAge: a novel approach to laser ablation ICP-MS U-Pb geochronology data reduction. Geostandards and Geoananaltical Research, 36: 247-270; https://doi.org/10.1111/j.1751-908X.2012.00158.x
  • 63. Plašienka, D., Grecula, P., Putiš, M., Hovorka, D., Kovác, M., 1997. Evolution and structure of the Western Carpathians: an overview. In: Geological evolution of the Western Carpathians (eds. P. Grecula, D. Hovorka, M. Putiš): 1-24. Mineralia Slovaca - Monograph Bratislava.
  • 64. Poprawa, P., Malata, T., Pécskay, Z., Kusiak, M.A., Banaś, M., Paszkowski, M., 2006. Geochronology of the crystalline basement of the Western Outer Carpathians' source areas - constraints from the K/Ar dating of mica and Th-U-Pb chemical dating of monazite from the crystalline ‘exotic' pebbles. Geolines 20: 110-112.
  • 65. Ridolfi, F., Renzulli, A., Puerini, M., 2010. Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contributions to Mineralogy and Petrology, 160: 45-66; https://doi.org/10.1007/s00410-009-0465-7
  • 66. Rioux, M., Jöns, N., Bowring, S., Lissenberg, C.J., Bach, W., Kylander-Clark, A., Hacker, B., Dudás, F., 2015. U-Pb dating of interspersed gabbroic magmatism and hydrothermal metamorphism during lower crustal accretion, Vema lithospheric section, Mid-Atlantic Ridge. Journal of Geophysical Research Solid Earth, 120: 2093-2118; https://doi.org/10.1002/2014JB011668
  • 67. Robert, B., Domeier, M., Jakob, J., 2021. On the origins of the lapetus Ocean. Earth-Science Reviews, 221: 103791; https://doi.org/10.1016/j.earscirev.2021.103791
  • 68. Schmidt, S.M., Bernoulli, D., Fügenschuh, B., Matenco, L., Scheffer, S., Schuster, R., Tischler, M., Ustaszewski, K., 2008. The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss Journal of Geosciences, 101:139-183; https://doi.org/10.1007/ s00015- 008- 1247-3
  • 69. Schwarzenbarch, E.M., Steele-Maclnnis, M., 2020. Fluids in submarine mid-ocean ridge hydrothermal setting. Elements, 16: 389-394; https://doi.org/10.2138/gselements.16.6.389
  • 70. Șengör, A.C., Natal'in, B.A., Sunal, G., van der Voo, R., 2018. The tectonics of the Altaids: Crustal growth during the construction of the continental lithosphere of Central Asia between ~750 and ~130 Ma ago. Annual Review of Earth and Planetary Sciences, 46: 439-494; https://doi.org/10.1146/annurev-earth-060313-054826
  • 71. Silantyev, S.A., Kostitsyn, Y.A., Cherkashin, D.V., Dick, H.J.B., Kelemen, P.B., Kononkova, N.N., Kornienko, E.M., 2008. Magmatic and metamorphic evolution of the oceanic crust in the western flank of the MAR crest zone at 15°44'N: Investigation of cores from sites 1275B and 1275D, JOIDES resolution Leg 209. Petrology, 16: 353-375; https://doi.org/10.1134/S0869591108040036
  • 72. Sinton, J.M., Detrick, R.S., 1992. Mid-ocean ridge magma chambers. Journal of Geophysical Research, 97: 197-216; https://doi.org/10.1029/91JB02508
  • 73. Stacey, J.S., Kramers, J.D., 1975. Approximation of terrestrial lead isotope evolution by a two stage model. Earth and Planetary Science Letters, 26: 207-221; https://doi.org/10.1016/0012-821X(75)90088-6
  • 74. Stampfli, G.M., Borel, G.D., Marchant, R., Mosar, J., 2002. Western Alps geological constraints on western Tethyan reconstructions. Journal of the Virtual Explorer, 8: 77-106.
  • 75. Steinmann, G., 1927. Die ophiolitischen Zonen in dem mediterraneen Kettengebirge. 14th International Geological Congress, Madrid Comptes Rendus, 2: 638-667.
  • 76. Szczuka, M., Gawęda, A., Waśkowska, A., Golonka, J., Szopa, K., Chew, D., Drakou, F., 2022. The Silesian Ridge in the light of petrological and LA-ICP-MS U-Pb analyses of cohesive debrites from the Istebna Formation (Silesian Nappe, Outer Western Carpathians, Poland). Geological Quarterly, 66: 1 5-29; https://doi.org/1 0.7306/gq. 1 652
  • 77. Szopa, K., Włodyka, R., Chew, D., 2014. LA-ICP-MS U-Pb apatite dating of Lower Cretaceous rocks from teschenite-picrite association in the Silesian Unit (southern Poland). Geologica Carpathica, 65: 273-284; https://doi.org/10.2478/geoca-2014-0018
  • 78. Ślączka, A., Kruglow, S., Golonka, J., Oszczypko, N., Popadyuk, I., 2006. The general geology of the Outer Carpathians, Poland, Slovakia, and Ukraine. AAPG Memoir, 84: 221-258.
  • 79. Unrug, R., 1968. The Silesian cordillera as the source of clastic material of the flysch sandstone of the Beskid Śląski and Beskid Wyspowy ranges (Polish Western Carpathians). Annales Societatis Geologorum Poloniae 38: 155-164.
  • 80. Vermeesh P., 2018. IsoplotR: A free and open toolbox for geochronology. Geoscience Frontiers, 9: 1479-1493; https://doi.org/10.1016/j.gsf.2018.04.001
  • 81. Weber, B., Schmitt, A.K., Cisneros de León, A., González- Guzman, R., Gerdes, A., 2020. Neoproterozoic extension and the Central Iapetus Magmatic Prov ince in southern Mexico - New U-Pb ages, Hf-O isotopes and trace element data of zircon from the Chiapas Massif Complex. Gondwana Research, 88: 1-20; https://doi.org/10.1016/j.gr.2020.06.022
  • 82. Winkler, W., Ślączka, A., 1994. A late Cretaceous to Paleogene geodynamic model for the Western Carpathians in Poland. Geologica Carpathica, 45: 71-82.
  • 83. Wieser, T., 1952. The ophiolithe from Osielec (in Polish with English summary). Annales Societatis Geologorum Poloniae, 21: 319-327.
  • 84. Winchester, J.A., Floyd, P.A., 1977. Geochemical discrimination of different magma series and their differentition products using immobile elements. Chemical Geology, 20: 325-343; https://doi.org/10.1016/0009-2541(77)90057-2
  • 85. Xia, L., Li, X., 2019. Basalt geochemistry as a diagnostic indicator of tectonic setting. Gondwana Research, 65: 43-97; https://doi.org/10.1016/j.gr.2018.08.006
  • 86. Xu, B., Zou, H., Chen, Y., He, J., Wang, Y., 2013. The Sugetbrak basalts from northwestern Tarim Block of northwest China: Geochronology, geochemistry and implications for Rodinia breakup and ice age in the Late Neoproterozoic. Precambrian Research. 236: 214-226; https://doi.org/10.1016/j.precamres.2013.07.009
  • 87. Youbi, N., Ernst, R.E., Derlund, U.S., Boumehdi, M.A., Ait, Lahna, A., Tassinari, C.C.G., El Moume, W., Bensalah, M.K., 2020. The Central Iapetus magmatic prov ince: an updated review and link with the ca. 580 Ma Gaskiers glaciation. GSA Special Papers, 544: 35-66; https://doi.org/10.1130/2020.2544(02)
  • 88. Zonenshain L.P., Kuzmin M.L., Natapov, L.N. 1990. Geology of the USSR: a plate-tectonic synthesis. Geodynamic Monograph, 21: 1-242; https://doi.org/10.1029/GD021
  • 89. Zuza, A.V., Yin, A., 2017. Balkatach hypothesis: A new model for the evolution of the Pacific, Tethyan, and Paleo-Asian oceanic domains. Geosphere, 13: 1664-1712; https://doi.org/10.1130/GES01463.1
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2b749629-7a44-48c8-981c-c0ca96280172
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.