PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamics of Nitrogen Transformations in the Soil Fertilized with Digestate from Agricultural Biogas Plant

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The biogas production from dedicated crops creates an additional organic fertilizer which may, at least partially, substitute synthetic-N fertilizers. The digestates are characterized by an elevated NH4-N content; therefore, they may supply more readily-available N to the crops, compared to manures. Thus, the aim of the study was the analysis of N dynamics in the soil fertilized with the digestate from agricultural biogas plant fed mainly with maize silage with addition of poultry manure and potato pulp. A laboratory incubation experiment was conducted for 56 days and the soil was sampled from the field fertilized with the same digestate under the conditions of regular farming practices. In both the incubation experiment and the field study, the digestate supplied the soil in NH4-N. The inorganic-N transformation showed a similar overall pattern with some differences. In the incubation experiment, after the application of the digestate in the amount corresponding to the fertilizer dose of 170 kg N ha-1, the NH4-N content decreased rapidly during the first 14 days from 61.54±5.65 mg N kg-1 to 19.02±4.12 mg N kg-1 and then at the day 42 – to values close to zero. In contrast, the NO3-N content increased from 6.35±0.35 mg N kg-1 to 50.65±4.73 mg N kg-1 at day 14 and further to 79.06±13.95 mg N kg-1 at day 42. In the field, the elevation of the NH4-N content after digestate application was less pronounced as a consequence of lower application rate (114 kg N ha-1); however, the rapid drop in the ammonium-N content from 20.41±9.18 mg N kg-1 at day 0 to 14.80±9.75 mg N kg-1 at day 7 followed by a slow decrease until the day 56, was observed. The average soil NO3-N content was rather constant in the first 7 days after fertilization and the rapid nitrification occurred in next 49 days resulting in the nitrate-N increase to 32.97±24.46 mg N kg-1. The overall pattern of N dynamics in the soil fertilized with digestate was the same in the incubation experiment and under the field condition, even though the studied soils showed some dissimilarities. Rapid ammonium-N transformation to nitrate-N may create favourable conditions for nitrate leaching; therefore, the farm management techniques should be focused on nutrient recycling and N loss prevention.
Słowa kluczowe
Rocznik
Strony
108--117
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Department of Agri-Food Engineering and Environmental Management, Faculty of Civil and Environmental Engineering, Białystok University of Technology, ul. Wiejska 45A, 15-351 Białystok, Poland
Bibliografia
  • 1. Alburquerque J.A., de la Fuente C., Bernal M.P. 2012. Chemical properties of anaerobic digestates affecting C and N dynamics in amended soils. Agriculture, Ecosystems & Environment, 160, 15–22.
  • 2. APHA 1999. Standard methods for the examination of water and wastewater, 20th edition. American Public Health Association, Washington, DC, USA, 1268 pp.
  • 3. Bernal M.P., Kirchmann H. 1992. Carbon and nitrogen mineralization and ammonia volatilization from fresh, aerobically and anaerobically treated pig manure during incubation. Biology &. Fertility of Soils, 13, 135–141.
  • 4. Cavalli D., Corti M., Baronchelli D., Bechini L., Gallina P.M. 2017. CO2 emissions and mineral nitrogen dynamics following application to soil of undigested liquid cattle manure and digestates. Geoderma, 308, 26–35.
  • 5. de la Fuente C., Alburquerque J.A., Clemente R., Bernal M.P. 2013. Soil C and N mineralisation and agricultural value of the products of an anaerobic digestion system. Biology and Fertility of Soils, 49, 313–322.
  • 6. Delin S., Stenberg B., Nyberg A., Brohede L. 2012. Potential methods for estimating nitrogen fertilizer value of organic residues. Soil Use and Management, 28, 283–291.
  • 7. Gattinger A., Muller A., Haeni M., Skinner C., Fliessbach A., Buchmann N., Mäder P., Stolze M., Smith P., El-Hage Scilabba N., Niggli U. 2012. Enhanced top soil carbon stocks under organic farming. PNAS, 109, 44, 18226–18231.
  • 8. Goberna M., Podmirseg S.M., Waldhube, S., Knapp B.A., Garcí, C., Insam H. 2011. Pathogenic bacteria and mineral N in soils following the land spreading of biogas digestates and fresh manure. Applied Soil Ecology, 49, 18–25.
  • 9. Gómez-Brandón M., Fernández-Delgado Juárez M., Zangerle M., Insam H. 2016. Effects of digestate on soil chemical and microbiological properties: A comparative study with compost and vermicompost. Journal of Hazardous Materials, 302, 267–274.
  • 10. Górniak A. 2000. Climate of the Podlaskie Voivodeship [in Polish]. IMGiW, Białystok.
  • 11. IMWM 2015. Climate Monitoring Bulletin. Institute of Meteorology and Water Management. National Research Institute, Warsaw.
  • 12. IPCC 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.
  • 13. Johansen A., Carter M.S., Jensen E.S, Hauggard-Nielsen H., Ambus P. 2013. Effects of digestate from anaerobically digested cattle slurry and plant materials on soil microbial community and emission of CO2 and N2O. Applied Soil Ecology, 63, 36–44.
  • 14. Journal of Laws of 2007 No. 147 item 1033. Act of 10 July 2007 on fertilisers and fertilizing, 1–29.
  • 15. Kucharek L., Iwański S., Diakowska E., Gąsiorek E. 2017. Assessment of meteorological drought in 2015 for north central part of Poland using hydrothermal coefficient (HTC) in the context of climate change [in Polish]. Infrastruktura i Ekologia Terenów Wiejskich, I/2/2017, 257–273.
  • 16. Malerba A.D., Kaiser K., Tambone F., Adani F., Buscaroli A., Provenzano M.R. 2014. Hydrophilic and hydrophobic fractions of water-soluble organic matter in digestates obtained from different organic wastes. International Biodeterioration & Biodegradation, 94, 73–78.
  • 17. Möller K., Müller T. 2012. Effects of anaerobic digestion on digestate nutrient availability and crop growth: a review. Engineering in Life Science, 12, 1–16.
  • 18. Myrold D.D., Posavatz N.R. 2007. Potential importance of bacteria and fungi in nitrate assimilation in soil. Soil Biology and Biochemistry, 39, 1737–1743.
  • 19. Rigby H., Smith S.R. 2013. Nitrogen availability and indirect measurements of greenhouse gas emissions from aerobic and anaerobic biowaste digestates applied to agricultural soils. Waste Management, 33, 2641–2652.
  • 20. Riva C., Orzi V., Carozzi M., Acutis M., Boccasile G., Lonati S., Tambone F., D’Imporzano G., Adani F. 2016. Short-term experiments in using digestate products as substitutes for mineral (N) fertilizer: Agronomic performance, odours, and ammonia emission impacts. Science of the Total Environment, 547, 206–214.
  • 21. Sahrawat K.L. 2008. Factors influencing nitrification in soils. Communications in Soil Science and Plant Analysis, 39, 1436–1446.
  • 22. Schrama M., de Haan J.J., Kroonen M., Verstegen H., Van der Putten W.H. 2018. Crop yield gap and stability in organic and conventional farming systems. Agriculture, Ecosystems and Environment, 256, 123–130.
  • 23. Smith S.R., Woods V., Evans T.D. 1998. Nitrate dynamics in biosolids-treated soils, II. Thermaltime models of the different nitrogen pools. Bioresource Technology, 66, 151–160.
  • 24. Stockdale E.A., Shepherd M.A., Fortune S., Cuttle S.P. 2002. Soil fertility in organic farming systems – fundamentally different? Soil Use and Management, 18, 301–308.
  • 25. Sulikowska A., Wypych A., Woszczek I. 2016. Wave of heat in summer 2015 and their circulation conditions [in Polish]. Badania Fizjograficzne. R. VII, Seria A, Geografia fizyczna, A67, 205–223.
  • 26. Svoboda N., Taube F., Wienforth B., Kluß C., Kage H., Herrmann A. 2013. Nitrogen leaching losses after biogas residue application to maize. Soil & Tillage Research, 130, 69–80.
  • 27. Wysocka-Czubaszek A., Czubaszek R., Roj-Rojewski S., Banaszuk P. 2018. A comparative study of digestate and cattle slurry application on N dynamics in fertilized soils. Proceedings of 17th International Scientific Conference Engineering for Rural Development, 23–25.05.2018 Jelgava, Latvia, 1804–1809.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2b7011d4-b5ff-4a93-9337-7364ae91029b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.