PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Radon intercomparison tests : Katowice, 2016

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
III International Conference „Radon in the Environment” (3 ; 27-31 May 2019 ; Krakow, Poland)
Języki publikacji
EN
Abstrakty
EN
At the beginning of the year 2016, the representatives of the Polish Radon Centre decided to organize proficiency tests (PTs) for measurements of radon gas and radon decay products in the air, involving radon monitors and laboratory passive techniques. The Silesian Centre for Environmental Radioactivity of the Central Mining Institute (GIG), Katowice, became responsible for the organization of the PT exercises. The main reason to choose that location was the radon chamber in GIG with a volume of 17 m3 , the biggest one in Poland. Accordingly, 13 participants from Poland plus one participant from Germany expressed their interest. The participants were invited to inform the organizers about what types of monitors and methods they would like to check during the tests. On this basis, the GIG team prepared the proposal for the schedule of exercises, such as the required level(s) of radon concentrations, the number and periods of tests, proposed potential alpha energy concentration (PAEC) levels and also the overall period of PT. The PT activity was performed between 6th and 17th June 2016. After assessment of the results, the agreement between radon monitors and other measurement methods was confirmed. In the case of PAEC monitors and methods of measurements, the results of PT exercises were consistent and confirmed the accuracy of the calibration procedures used by the participants. The results of the PAEC PTs will be published elsewhere; in this paper, only the results of radon intercomparison are described.
Czasopismo
Rocznik
Strony
127--132
Opis fizyczny
Bibliogr. 16 poz., rys.
Twórcy
  • Central Mining Institute Plac Gwarkow 1, 40-166 Katowice, Poland
  • Central Mining Institute Plac Gwarkow 1, 40-166 Katowice, Poland
  • Central Mining Institute Plac Gwarkow 1, 40-166 Katowice, Poland
  • Institute of Nuclear Physics PAN Radzikowskiego 152, 31-342 Kraków, Poland
  • Central Mining Institute Plac Gwarkow 1, 40-166 Katowice, Poland
  • Institute of Nuclear Physics PAN Radzikowskiego 152, 31-342 Kraków, Poland
  • Institute of Nuclear Physics PAN Radzikowskiego 152, 31-342 Kraków, Poland
autor
  • Central Mining Institute Plac Gwarkow 1, 40-166 Katowice, Poland
  • University of Wrocław Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Institute of Physics, University of Silesia 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
  • Institute of Physics, University of Silesia 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
  • University of Łodz Narutowicza 68, 90-136 Łódź, Poland
  • Nofer Institute of Occupational Medicine św. Teresy od Dzieciątka Jezus 8, 91-348 Łódź, Poland
autor
  • Institute of Nuclear Chemistry and Technology Dorodna 16, 03-195 Warszawa, Poland
  • Medical University of Białystok, Jana Kilińskiego 1, 15-089 Białystok, Poland
autor
Bibliografia
  • 1. European Union. (2013). Council Directive 2013/59/Euratom of 5 December 2013 laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom.Official Journal of the European Union, OJ L13,17.1.2014, 1–73. https://eur-lex.europa.eu/legalcontent/EN/TXT/?uri=OJ:L:2014:013:TOC.
  • 2. Polish Atomic Law. (2019). Law of June 13, 2019 amending the Atomic Law and the Act on fire protection. Dz.U., 2019, item 1593. (in Polish).3. Mamont-Cieśla, K., Stawarz, O., Karpińska, M.,Kapała, J., Kozak, K., Grządziel, D., Chałupnik, S.,Chmielewska, I., Olszewski, J., Przylibski, T. A., & Żebrowski, A. (2010). Intercomparison of radon CR-39 detector systems conducted in CLOR’s calibration chamber. Nukleonika, 55(4), 589–593.
  • 4. Kozak, K., Kozłowska, B., Przylibski, T. A., Mazur, J., Adamczyk-Lorenc, A., Mamont-Cieśla, K., Stawarz, O., Dorda, J., Kłos, B., Janik, M., & Kochowska, E. (2012). Intercomparison measurements of 222Rn concentration in water samples in Poland. Radiat. Meas., 47, 89–95.
  • 5. World Health Organization. (2009). WHO Handbook on indoor radon: A public health perspective. Geneva: WHO. Available from https://www.ncbi.nlm.nih.gov/books/NBK143222/.
  • 6. Baixeras, C., Bacmeister, U., Climent, H., Aibarracin,D., Enge, W., Freyer, K., Treutler, H. -C., Jönsson, G.,Ghose, R., Monnin, M. M., Font, L., Devantier, R.,Seidei, J. -L., Sciocchetti, G., & Coteilessa, G. (1996). Report on the first phase activity of an EU project concerning coordinated radon measurements in fi ve European countries. Environ. Int., 22(Suppl. 1), 687–697.
  • 7. Jönsson, G., Bacmeister, G. U., Baixeras, C., Climent,H., Cotellessa, G., Devantier, R., Enge, W., Freyer, K.,Font, L. L., Ghose, R., Monnin, M. M., Sciocchetti, G.,Seidel, J. -L., & Treutler, H. C. (1997). Comparison of radon measurements done by solid state nuclear track detectors and electronic devices in the framework of an EU-radon project. Radiat. Meas., 28(1/6), 651–655.
  • 8. Foerster, E., Friedrich, F., Dubslaff, M., Schneider, F., & Doering. J. (2019). Instruments to measure Radon-222 activity concentration or exposure to Radon-222; Interlaboratory comparison 2018. Bundesamt für Strahlenschutz. (Report BfS-SW-28/19).
  • 9. Beck, T. R., Buchröder, H., Foerster, E., & Schmidt, V. (2007). Interlaboratory comparisons for passive radon measuring devices at BfS. Radiat. Prot. Dosim., 125(1/4), 572–575.
  • 10. Butterweck, G., Schuler, Ch., Paul, A., Honig, A., Dersch, R., Schmidt, V., Hamel, P., Buchröder, H., Rox,A., & Herzog, W. (2002). Intercomparison exercise of the PTB, BfS, MPA and PSI calibration facilities for radon gas concentration. Radiat. Prot. Dosim., 98(2),219–222.
  • 11. Tokonami, S., Ishimori, Y., Ishikawa, T., Yamasaki,K., & Yamada, Y. (2005). Intercomparison exercise of measurement techniques for radon, radon decay products and their particle size distributions at NIRS. Jap. J. Health Phys., 40(2), 183–190.
  • 12. Rottger, A., Honig, A., Schmidt, V., Buchroder, H., Rox, A., Butterweck, G., Schuler, Ch., Maringer, F. J., Jachs, P., Edelmaier, R., Michielsen, N., Howarth, C. B., Miles, J. C. H., Vargas, A., Ortega, X., Burian, I., Turtiainen, T., & Hagberg, N. (2006). Radon activity concentration – a Euromet and BIPM supplementary comparison. Appl. Radiat. Isot., 64(10/11), 1102–1107.
  • 13. Franci, D., Aureli, T., & Cardellini, F. (2016). An alternative calibration of CR-39 detectors for radon detection beyond the saturation limit. Radiat. Prot. Dosim., 172(4), 496–500.
  • 14. Jobbagy, V., Stroh, H., Marissens, G., Gruber, V., Roth, D., Willnauer, S., Bernreiter, M., von Philipsborn, H., & H ult, M. (2019). Evaluation of a radon-in-water pilot-proficiency test. Appl. Radiat. Isot., 153, 108836.
  • 15. Pommé, S., & Keightley, J. (2015). Determination of reference value and its uncertainty through a power-moderated mean. Metrologia, 52, S200–S212.
  • 16. Hofmann, W., Arvela, H. S., Harley, N. H., Marsh,J. W., McLaughlin, J., Röttger, A., & Tokonami, S.(2012). Principles of radon and radon progeny detection systems and measurements. Journal of the ICRU, 12(2), 71–94.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2b6d03cd-856a-4d2f-b456-c3403a1db097
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.