PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Identification and classification of turn short-circuit and demagnetization failures in PMSM using LSTM and GRU methods

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In an extremely broad range of industrial applications, especially in electric vehicles, permanent magnet synchronous motors (PMSMs) play a vital role. Any failure in PMSMs may cause possible safety hazards, a drop in productivity, and expensive downtime. Therefore, their reliable operation is essential. Accurate failure identification and classification allow for addressing problems before they escalate, which helps ensure the seamless operation of PMSMs and reduces the likelihood of equipment failure. Therefore, in this paper, novel failure identification methods based on gated recurrent unit (GRU) and long short-term memory (LSTM) from recurrent neural network (RNN) methods are proposed for early identification of stator inter-turn short circuit failure (ISCF) and demagnetization failure (DF) occurring in PMSMs under multiple operating conditions. The proposed methods use three-phase current signals recorded from the experimental study under multiple operating conditions of the motor as input data. In the proposed methods, both feature extraction and classification are executed within a unified framework. The experimental outcomes obtained demonstrate that the proposed methods can identify a total of six unique motor conditions, including three ISCF variations and two DF variations, with high accuracy. The LSTM and GRU approaches predicted the identification of failures with 98.23% and 98.72% accuracy, respectively. Compared to existing methods, the success of the proposed approaches is satisfactory. In addition, LSTM and GRU-based failure identification methods are also compared in detail for accuracy, precision, sensitivity, specificity, and training time in this study.
Rocznik
Strony
art. no. e151958
Opis fizyczny
Bibliogr. 50 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Electrical and Electronics Engineering, Faculty of Architecture and Engineering, Batman University, Bati Raman Campus 72000, Batman, Turkey
  • Department of Electrical and Electronics Engineering, Faculty of Architecture and Engineering, Batman University, Bati Raman Campus 72000, Batman, Turkey
Bibliografia
  • [1] Y. Jiang, B. Ji, J. Zhang, J. Yan, and W. Li, “An Overview of Diagnosis Methods of Stator Winding Inter-Turn Short Faults in Permanent-Magnet Synchronous Motors for Electric Vehicles,” World Electr. Veh. J., vol. 15, no. 4, p. 165, Apr. 2024, doi: 10.3390/wevj15040165.
  • [2] T. Peng, C. Ye, C. Yang, Z. Chen, K. Liang, and X. Fan, “A novel fault diagnosis method for early faults of PMSMs under multiple operating conditions,” ISA Trans., vol. 130, pp. 463–476, 2022, doi: 10.1016/j.isatra.2022.04.023.
  • [3] L. Vancini, M. Mengoni, G. Rizzoli, L. Zarri, and A. Tani, “Local Demagnetization Detection in Six-Phase Permanent Magnet Synchronous Machines,” IEEE Trans. Ind. Electron., vol. 71, no. 6, pp. 5508–5518, Jun. 2024, doi: 10.1109/TIE.2023.3294603.
  • [4] J. Faiz, H. Nejadi-Koti, and Z. Valipour, “Comprehensive review on inter-turn fault indexes in permanent magnet motors,” IET Electr. Power Appl., vol. 11, no. 1, pp.142–156, 2017, doi: 10.1049/iet-epa.2016.0196.
  • [5] C. Zeng, S. Huang, J. Lei, Z. Wan, and Y. Yang, “Online Rotor Fault Diagnosis of Permanent Magnet Synchronous Motors Based on Stator Tooth Flux,” IEEE Trans. Ind. Appl., vol. 57, no. 3, pp. 2366–2377, May 2021, doi: 10.1109/TIA.2021.3058541.
  • [6] T. Orlowska-Kowalska et al., “Fault Diagnosis and Fault-Tolerant Control of PMSM Drives–State of the Art and Future Challenges,” IEEE Access, vol. 10, pp. 59979–60024, 2022, doi: 10.1109/ACCESS.2022.3180153.
  • [7] J. Fang, Y. Sun, Y. Wang, B. Wei, and J. Hang, “Improved ZSVC-based fault detection technique for incipient stage inter-turn fault in PMSM,” IET Electr. Power Appl., vol. 13, no. 12, pp. 2015–2026, Dec. 2019, doi: 10.1049/iet-epa.2019.0016.
  • [8] T. Lale and B. Gümüş, “A New Approach based on Electromechanical Torque for Detection of Inter-Turn Fault in Permanent Magnet Synchronous Motor,” Electr. Power Compon. Syst., vol. 49, no. 18–19, pp. 1499–1511, Nov. 2021, doi: 10.1080/15325008.2022.2133193.
  • [9] J. Urresty, J. Riba, L. Romeral, J. Rosero, and J. Serna, “Stator short circuits detection in PMSM by means of Hilbert-Huang transform and energy calculation,” in 2009 IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, 2009, vol. 5, no. 2, pp. 1–7, doi: 10.1109/DEMPED.2009.5292789.
  • [10] G. Niu, X. Dong, and Y. Chen, “Motor Fault Diagnostics Based on Current Signatures: A Review,” IEEE Trans. Instrum. Meas., vol. 72, pp. 1–19, 2023, doi: 10.1109/TIM.2023.3285999.
  • [11] F. Cira, M. Arkan, and B. Gumus, “Detection of Stator Winding Inter-Turn Short Circuit Faults in Permanent Magnet Synchronous Motors and Automatic Classification of Fault Severity via a Pattern Recognition System,” J. Electr. Eng. Technol., vol. 11, no. 2, pp. 416–424, Mar. 2016, doi: 10.5370/JEET.2016.11.2.416.
  • [12] J.-C. Urresty, J.-R. Riba, and L. Romeral, “Application of the zero-sequence voltage component to detect stator winding inter-turn faults in PMSMs,” Electr. Power Syst. Res., vol. 89, pp. 38–44, Aug. 2012, doi: 10.1016/j.epsr.2012.02.012.
  • [13] T. Lale, M.S. Ozerdem, and B. Gumus, “Analysis of Permanent Magnet Synchronous Motor Current in Healthy and Short Circuit Failure Cases with Discrete Wavelet Transform,” in 2019 Innovations in Intelligent Systems and Applications Conference (ASYU), 2019, pp. 1–5, doi: 10.1109/ASYU48272.2019.8946330.
  • [14] S. Manala and J. Seshadrinath, “Reactive Power-Residual-Based Stator Interturn Fault Detection in PMSM Drive,” IEEE Trans. Ind. Appl., vol. 60, no. 3, pp. 4888–4898, 2024, doi: 10.1109/TIA.2024.3351627.
  • [15] J. Rosero, L. Romeral, J.A. Ortega, and J.C. Urresty, “Demagnetization fault detection by means of Hilbert Huang transform of the stator current decomposition in PMSM,” in 2008 IEEE International Symposium on Industrial Electronics, 2008, pp. 172–177, doi: 10.1109/ISIE.2008.4677217.
  • [16] J.C. Urresty, J.R. Riba, M. Delgado, and L. Romeral, “Detection of demagnetization faults in surface-mounted permanent magnet synchronous motors by means of the zero-sequence voltage component,” IEEE Trans. Energy Convers., vol. 27, no. 1, pp. 42–51, 2012, doi: 10.1109/TEC.2011.2176127.
  • [17] C. Wang, M. Delgado Prieto, L. Romeral, Z. Chen, F. Blaabjerg, and X. Liu, “Detection of Partial Demagnetization Fault in PMSMs Operating Under Nonstationary Conditions,” IEEE Trans. Magn., vol. 52, no. 7, pp. 1–4, Jul. 2016, doi: 10.1109/TMAG.2015.2511003.
  • [18] M. Eker and M. Özsoy, “Investigation of the effect of demagnetization fault at Line Start AF-PMSM with FEM,” Acad. Platf. J. Eng. Smart Syst., vol. 10, no. 2, pp. 94–100, May 2022, doi: 10.21541/apjess.1007894.
  • [19] M. Eker and M. Özsoy, “Effect of demagnetization faults on line start AF-PMSM performance,” J. Power Electron., vol. 22, no. 6, pp. 1001–1009, Jun. 2022, doi: 10.1007/s43236-022-00439-5.
  • [20] Y. Ko, Y. Lee, J. Oh, J. Park, H. Chang, and N. Kim, “Current signature identification and analysis for demagnetization fault diagnosis of permanent magnet synchronous motors,” Mech. Syst. Signal Process., vol. 214, no. April, p. 111377, 2024, doi: 10.1016/j.ymssp.2024.111377.
  • [21] S.M. Baba, I. Bala, G. Dhiman, A. Sharma, and W. Viriyasitavat, “Automated diabetic retinopathy severity grading using novel DR-ResNet + deep learning model,” Multimed. Tools Appl., vol. 83, no. 28, pp. 71789–71831, Feb. 2024, doi: 10.1007/s11042-024-18434-2.
  • [22] Pinki et al., “Artificial intelligence-enabled smart city management using multi-objective optimization strategies,” Expert Syst., Mar. 2024, doi: 10.1111/exsy.13574.
  • [23] S.I. Evangeline, S. Darwin, and E. Fantin Irudaya Raj, “A deep residual neural network model for synchronous motor fault diagnostics,” Appl. Soft Comput., vol. 160, p. 111683, Jul. 2024, doi: 10.1016/j.asoc.2024.111683.
  • [24] N. Sehrawat, S. Vashisht, A. Singh, G. Dhiman, W. Viriyasitavat, and N.S. Alghamdi, “A power prediction approach for a solar-powered aerial vehicle enhanced by stacked machine learning technique,” Comput. Electr. Eng., vol. 115, p. 109128, Apr. 2024, doi: 10.1016/j.compeleceng.2024.109128.
  • [25] B. Gümüs, H. Kılıç, C. Haydaroglu, and U.Y. Butakın, “Fault Type and Fault Location Detection in Transmission Lines with 6-Convolutional Layered CNN,” Bull. Pol. Acad. Sci. Tech. Sci., p. e151047, Jul. 2024, doi: 10.24425/bpasts.2024.151047.
  • [26] A. Alferaidi et al., “Node Multi-Attribute Network Community Healthcare Detection Based on Graphical Matrix Factorization,” J. Circ. Syst. Comput., vol. 33, no. 05, p. 2450080, Mar. 2024, doi: 10.1142/S0218126624500804.
  • [27] P. Pietrzak and M. Wolkiewicz, “Application of continuous wavelet transform and convolutional neural networks in fault diagnosis of PMSM stator windings,” Bull. Pol. Acad. Sci. Tech. Sci., p. e150202, Apr. 2024, doi: 10.24425/bpasts.2024.150202.
  • [28] T. Lale and B. Gümüş, “An effective torque-based method for automatic turn fault detection and turn fault severity classification in permanent magnet synchronous motor,” Electr. Eng., vol. 106, no. 3, pp. 2865–2876, Jun. 2024, doi: 10.1007/s00202-023-02113-w.
  • [29] M. Skowron, “Analysis of PMSM Short-Circuit Detection Systems Using Transfer Learning of Deep Convolutional Networks,” Power Electron. Drives, vol. 9, no. 1, pp. 21–33, 2024, doi: 10.2478/pead-2024-0002.
  • [30] L.A. Al-Haddad, S.S. Shijer, A.A. Jaber, S.T. Al-Ani, A.A. Al-Zubaidi, and E.T. Abd, “Application of AdaBoost for stator fault diagnosis in three-phase permanent magnet synchronous motors based on vibration–current data fusion analysis,” Electr. Eng., vol. 106, no. 4, pp. 4527–4542, 2024, doi: 10.1007/s00202-023-02195-6.
  • [31] K.J. Shih, M.F. Hsieh, B.J. Chen, and S.F. Huang, “Machine Learning for Inter-Turn Short-Circuit Fault Diagnosis in Permanent Magnet Synchronous Motors,” IEEE Trans. Magn., vol. 58, no. 8, pp. 1–7, 2022, doi: 10.1109/TMAG.2022.3169173.
  • [32] L.A. Al-Haddad, A.A. Jaber, M.N. Hamzah, and M.A. Fayad, “Vibration-current data fusion and gradient boosting classifier for enhanced stator fault diagnosis in three-phase permanent magnet synchronous motors,” Electr. Eng., vol. 106, no. 3, pp. 3253–3268, Jun. 2024, doi: 10.1007/s00202-023-02148-z.
  • [33] M.R. Minaz, “An effective method for detection of stator fault in PMSM with 1D-LBP,” ISA Trans., vol. 106, pp. 283–292, 2020, doi: 10.1016/j.isatra.2020.07.013.
  • [34] H. Lee, H. Jeong, G. Koo, J. Ban, and S.W. Kim, “Attention Recurrent Neural Network-Based Severity Estimation Method for Interturn Short-Circuit Fault in Permanent Magnet Synchronous Machines,” IEEE Trans. Ind. Electron., vol. 68, no. 4, pp. 3445–3453, Apr. 2021, doi: 10.1109/TIE.2020.2978690.
  • [35] I.H. Kao, W.J. Wang, Y.H. Lai, and J.W. Perng, “Analysis of Permanent Magnet Synchronous Motor Fault Diagnosis Based on Learning,” IEEE Trans. Instrum. Meas., vol. 68, no. 2, pp. 310–324, 2019, doi: 10.1109/TIM.2018.2847800.
  • [36] M. Eker and B. Gündogan, “Demagnetization fault detection of permanent magnet synchronous motor with convolutional neural network,” Electr. Eng., vol. 105, no. 3, pp. 1695–1708, Jun. 2023, doi: 10.1007/s00202-023-01768-9.
  • [37] Y.W. Youn, D.H. Hwang, S.J. Song, and Y.H. Kim, “Detection and classification of demagnetization and short-circuited turns in permanent magnet synchronous motors,” J. Electr. Eng. Technol., vol. 13, no. 4, pp. 1613–1621, 2018, doi: 10.5370/JEET.2018.13.4.1614.
  • [38] M. Hussain et al., “Stator winding fault detection and classification in three-phase induction motor,” Intell. Autom. Soft Comput., vol. 29, no. 3, pp. 869–883, 2021, doi: 10.32604/iasc.2021.017790.
  • [39] M. Hussain, T. Din Memon, I. Hussain, Z. Ahmed Memon, and D. Kumar, “Fault Detection and Identification Using Deep Learning Algorithms in Induction Motors,” Comput. Model. Eng. Sci., vol. 133, no. 2, pp. 435–470, 2022, doi: 10.32604/cmes.2022.020583.
  • [40] R.H. Kılıç and E. Dandıl, “Asenkron Motor Rulman Hatalarının Uzun – Kısa Süreli Bellek Tipi Derin Sinir Ağlarıile Otomatik SınıflandırılmasıAutomatic Classification of Induction Motor Bearing Faults using Long – Short Term Memory Deep Neural Networks,” Avrupa Bilim Ve Teknoloji Dergisi, vol. 32, pp. 508–513, 2021, doi: 10.31590/ejosat.1039836 (in Turkish).
  • [41] D. Xiao, Y. Huang, C. Qin, H. Shi, and Y. Li, “Fault Diagnosis of Induction Motors Using Recurrence Quantification Analysis and LSTM with Weighted BN,” Shock Vib., vol. 2019, p. 8325218, 2019, doi: 10.1155/2019/8325218.
  • [42] J. Vanga et al., “Fault classification of three phase induction motors using Bi-LSTM networks,” J. Electr. Syst. Inf. Technol., vol. 10, no. 1, p. 28, 2023, doi: 10.1186/s43067-023-00098-x.
  • [43] T. Zimnickas, J. Vanagas, K. Dambrauskas, A. Kalvaitis, and M. Ažubalis, “Application of advanced vibration monitoring systems and long short-term memory networks for brushless DC motor stator fault monitoring and classification,” Energies, vol. 13, no. 4, p. 820, 2020, doi: 10.3390/en13040820.
  • [44] F. Husari and J. Seshadrinath, “Early Stator Fault Detection and Condition Identification in Induction Motor Using Novel Deep Network,” IEEE Trans. Artif. Intell., vol. 3, no. 5, pp. 809–818, 2022, doi: 10.1109/TAI.2021.3135799.
  • [45] A. Kumar, A. Parey, and P.K. Kankar, “A New Hybrid LSTM-GRU Model for Fault Diagnosis of Polymer Gears Using Vibration Signals,” J. Vib. Eng. Technol., vol. 12, no. 2, pp. 2729–2741, 2024, doi: 10.1007/s42417-023-01010-7.
  • [46] A. Sherstinsky, “Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network,” Phys. D Nonlinear Phenom., vol. 404, p. 132306, 2020, doi: 10.1016/j.physd.2019.132306.
  • [47] P. Suawa, T. Meisel, M. Jongmanns, M. Huebner, and M. Reichenbach, “Modeling and Fault Detection of Brushless Direct Current Motor by Deep Learning Sensor Data Fusion,” Sensors, vol. 22, no. 9, p. 3516, 2022, doi: 10.3390/s22093516.
  • [48] J.H. Lee and J.K. Hong, “Comparative Performance Analysis of RNN Techniques for Predicting Concatenated Normal and Abnormal Vibrations,” Electronics, vol. 12, no. 23, p. 4778, 2023, doi: 10.3390/electronics12234778.
  • [49] M. Ertargin, O. Yildirim, and A. Orhan, “Mechanical and electrical faults detection in induction motor across multiple sensors with CNN-LSTM deep learning model,” Electr. Eng., 2024, doi: 10.1007/s00202-024-02420-w.
  • [50] G. Yan and Y. Hu, “Inter-turn short circuit and demagnetization fault diagnosis of ship PMSM based on multiscale residual dilated CNN and BiLSTM,” Meas. Sci. Technol., vol. 35, no. 4, p. 046105, Apr. 2024, doi: 10.1088/1361-6501/ad19c0.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2b68a862-c0af-42b7-aed6-9a1ed9ab4272
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.