PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Occupational Risk Management Method for Quarry Blasting Operations Based on Modified FMECA Algorithm

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Metoda zarządzania ryzykiem zawodowym dla robót strzałowych w odkrywkowym górnictwie skalnym w oparciu o zmodyfikowany algorytm FMECA
Języki publikacji
EN
Abstrakty
EN
Occupational risk assessment is one of the most crucial legal obligation for employers and the basis of accident prevention. In the case of highly repetitive work operations and an almost constant work environment, performing a preliminary risk analysis and checking risk levels periodically may be sufficient. In the case of blasting operations in quarries: the mining and geological conditions, technology, blasting methods, explosives, and initiating agents are variables that affect occupational safety. Moreover they make occupational risk assessment difficult to apply on the operational level. Therefore, occupational risk management followed by a deep analysis of hazards and their associated risks may allow to design and manage blasting works with regard to occupational risk. The paper presents the method for the support of occupational risk management in quarry blasting operations based on a modified FMECA algorithm. The designed method provides a systematic approach to risk identification, and allows to indication of the main occupational hazards that should be prioritized for preventive action. The preventive action which could be implied in the design stage by changes in technology or work organization based on options available for a particular quarry.
PL
Ocena ryzyka zawodowego stanowi jedno z podstawowych wymagań prawnych stawianych pracodawcy oraz fundament prewencji wypadkowej. W przypadku prac charakteryzujących się powtarzalnymi czynnościami i niewielką zmiennością środowiska pracy, wykonanie oceny ryzyka zawodowego wraz z okresową kontrolą poziomu ryzyka wydaje się wystarczające i spełnia wymaganie stawiane przez prawo. Rozważając prace strzałowe w kamieniołomach, warunki górnicze i geologiczne, stosowana technologia i metody strzelania, środki strzałowe i inicjujące są zmiennymi, które mogą wpływać na poziom bezpieczeństwa pracy. Ponadto zmienne występujące w trakcie robót strzałowych powodują, że ocena ryzyka zawodowego i jej wyniki są trudne do wdrożenia na poziomie operacyjnym. Rozwiązaniem tego problemu może być zarządzanie ryzykiem zawodowym poprzedzone szczegółową analizą zagrożeń i towarzyszących im ryzyk, które może pozwolić na projektowanie i zarządzanie robotami strzałowymi z uwzględnieniem ryzyka zawodowego pracowników. Artykuł prezentuje metodę wspierającą zarządzanie ryzykiem zawodowym w robotach strzałowych w odkrywkowym górnictwie skalnym opartą na zmodyfikowanym algorytmie FMECA. Zaproponowana metoda pozwala na systematyczne podejście do identyfikowania ryzyk zawodowych i wskazuje na kluczowe zagrożenia zawodowe, dla których powinny zostać w szczególności zastosowane działania profilaktyczne. Ograniczenie ryzyka zawodowego może być osiągnięte na etapie projektowania robót strzałowych poprzez zmianę technologii lub organizacji pracy w oparciu o dostępne możliwości dla danego zakładu górniczego, a wybór charakteru rodzaju zmian jest wspierany przez zaproponowany w niniejszym artykule algorytm.
Rocznik
Tom
Strony
241--249
Opis fizyczny
Bibliogr. 51 poz., tab., rys.
Twórcy
  • AGH University of Krakow; Faculty of Civil Engineering and Resource Management, Mickiewicza 30 av., Krakow, Poland
Bibliografia
  • 1. MOREL, G.; PILLAY, M. The occupational risk assessment method: a tool to improve organizational resilience in the context of occupational health and safety management. In Advances in Safety Management and Human Factors, 2020, p. 367-376.
  • 2. FASORANTI, A.J. Occupational risk assessment as a tool for minimizing workplace accidents in Nigeria industries. In International Journal of Education and Research, vol. 3, no. 5, 2015, p. 143-156.
  • 3. BĂBUŢ, G.B.; MORARU, R.I. Occupational risk assessment: imperatives for process improvement. In Quality – Access to Success, vol. 19, issue 166, 2018, p. 133-144.
  • 4. Labour Code of 26 June 1974 (Journal of Laws 1974 no. 24 item 141 as amended).
  • 5. Decree of the Minister of Labour and Social Policy of 26 September 1997 on general regulations of safety and hygiene at work (Journal of Laws 2003 no. 169 item 1650 as amended).
  • 6. Council Directive 89/391/EEC of 12 June 1989 on the introduction of measures to encourage improvements in the safety and health of workers at work.
  • 7. PN-N-18002:2011 - Occupational health and safety management systems - General guidelines for risk assessment.
  • 8. IEC 31010:2019 - Risk management - Risk assessment techniques.
  • 9. Decree of the Minister of Energy of 9 November 2016 on the particular requirements for the storage and use of blasting agents and equipment in the mining plant's operation (Journal of Laws 2016 item 321).
  • 10. YAN, Y.; HOU, X.; FEI, H. Review of predicting the blast-induced ground vibrations to reduce impacts on ambient urban communities. In Journal of Cleaner Production, vol. 260, 2020.
  • 11. DING, X.; HASANIPANAH, M.; RAD, H.N.; ZHOU, W. Predicting the blast-induced vibration velocity using a bagged support vector regression optimized with firefly algorithm. In Engineering with computers, vol. 37, 2021, p. 2273-2284.
  • 12. CHOI, Y.; LEE, S.S. Predictive modelling for blasting-induced vibrations from open-pit excavations. In Applied Sciences, no. 11, vol. 16, 2021.
  • 13. MATIDZA, M.I.; JIANHUA, Z.; GANG, H.; MWANGI, A.D. Assessment of blast-induced ground vibration at Jinduicheng molybdenum open pit mine. In Natural Resources Research, vol. 29, 2020, p. 831-841.
  • 14. AKYILDIZ, O.; HUDAVERDI, T. ANFIS modelling for blast fragmentation and blast-induced vibrations considering stiffness ratio. In Arabian Journal of Geosciences, vol. 13, 2020.
  • 15. GORAI, A.K.; HIMANSHU, V.K.; SANTI, C. Development of ANN-based universal predictor for prediction of blast-induced vibration indicators and its performance comparison with existing empirical models. In Mining, Metallurgy & Exploration, vol. 38, 2021, p. 2021-2036.
  • 16. KANGDA, M.Z.; BAKRE, S. Dynamic analysis of base isolated connected buildings subjected to seismic and blast induced vibrations. In Soil Mechanics and Foundation Engineering, vol. 58, 2021, p. 416-424.
  • 17. KANGDA, M.; BAKRE, S. Performance of linear and nonlinear damper connected buildings under blast and seismic excitations. In Innovative Infrastructure Solutions, vol. 6, 2021.
  • 18. KANGDA, M,Z.; BAKRE, S. Performance evaluation of moment-resisting steel frame buildings under seismic and blast-induced vibrations. In Journal of Vibration Engineering & Technologies, vol. 8, 2020, p. 1-26.
  • 19. WANG, P.; MA, Y.; ZHU, Y.; ZHU, J. Experimental study of blast-induced vibration characteristics based on the delay-time errors of detonator. In Advances in Civil Engineering, vol. 2020, 2020.
  • 20. ROY, M.P.; MISHRA, A.K.; AGRAWAL, H.; SINGH, C.P. Blast vibration dependence on total explosives weight in open-pit blasting. In Arabian Journal of Geosciences, vol. 13, 2020.
  • 21. SINGH, C.P.; AGRAWAL, H.; MISHRA, A.K. Frequency channeling: a concept to increase the frequency and control the PPV of blast-induced ground vibration waves in multi-hole blast in surface mine. In Bulletin of Engineering Geology and the Environment, vol. 80, 2021, p. 8009-8019.
  • 22. HASANIPANAH, M.; AMNIEH, H.B. A fuzzy rule-based approach to address uncertainty in risk assessment and prediction of blast-induced flyrock in a quarry. In Natural Resources Research, vol. 29, 2020, p. 669-689.
  • 23. NGUYEN, H.; BUI, X-N.; BUI, H-B.; MAI, N-L. A comparative study of artificial neural networks in predicting blast-induced air-blast overpressure at Deo Nai open-pit coal mine, Vietnam. In Neural Computing and Applications, vol. 32, 2020, p. 3939-3955.
  • 24. ZHOU, X.; ARMAGHANI, D.J.; YE, J.; KHARI, M.; MOTAHARI, M.R. Hybridization of parametric and non-parametric techniques to predict air over-pressure induced by quarry blasting. In Natural Resources Research, vol. 30, 2021, p. 209-224.
  • 25. FANG, Q.; NGUYEN, H.; BUI, X-N.; TRAN, Q-H. Estimation of blast-induced air overpressure in quarry mines using cubist-based genetic algorithm. In Natural Resources Research, vol. 29, 2020, p. 593-607.
  • 26. HAN H.; ARMAGHANI, D.J.; TARINEJAD, R.; ZHOU, J.; TAHIR, M.M. Random forest and Bayesian network techniques for probabilistic prediction of flyrock induced by blasting in quarry sites. In Natural Resources Research, vol. 29, 2020, p. 655-667.
  • 27. KIANI M., HOSSEINI, S.H., TAJI, M.; GHOLINEJAD, M. Risk assessment of blasting operations in open pit mines using FAHP method. In Mining of Mineral Deposits, vol. 13, issue 3, 2019, p. 76-86.
  • 28. Act of 21 June 2002 on explosives for civil use (Journal of Laws 2002 no. 117 item 1007).
  • 29. Decree of the Minister of Economy of 8 April 2013 on detailed requirements for the operation of an opencast mine (Journal of Laws 2013 item 1008).
  • 30. Decree of the Minister of Economy of 18 February 2011 on how to perform work with explosives for civil use and when clearing areas (Journal of Laws 2011 no. 42 item 216).
  • 31. Decree of the Minister of Labour and Social Policy of 14 March 2000 on health and safety at work in manual handling activities (Journal of Laws 2000 no. 26 item 313).
  • 32. Decree of the Minister of Health of 2 February 2011 on the analysis and measurement of factors hazardous to health in the working environment (Journal of Laws 2011 no. 33 item 166).
  • 33. ZHENG, X.; YANG, Q.; JIN, L.; ZHENG, Y.; LUO, H.; MA, G. Numerical simulation on spatio-temporal distribution regularities of blasting dust mass concentration in open quarry. In China Safety Science Journal, vol. 30, issue 10, 2020, p. 55-62.
  • 34. DEGAN, A.G.; LIPIELLO, D.; PINZARI, M. Occupational hazard prevention and control in a quarry environment: exposure to airborne dust. In WIT Transactions on the Built Environment, vol. 151, 2015, p. 27-38.
  • 35. CARBONE, S.; DE BRITO, V. A simulation approach to predict workers’ exposure to respirable dust in a quarry site: a case study. In International Multidisciplinary Scientific GeoConference SGEM 2, 2016, p. 25-32.
  • 36. EKONG, A.E.; EZEOKORO C.; NWAICHI, E.O.; OBELE, R.E. Occupational health and safety management in selected stone quarries in Akamkpa, Cross River State, Nigeria. In Current Journal of Applied Science and Technology, vol. 39, issue 34, 2020, p. 107-122.
  • 37. TIMOFEEVA, S.S.; DROZDOVA, I.V.; BOBOEV, A.A. Assessment of occupational risks of employees engaged in open pit mining. In E3S Web of Conferences - XVIII Scientific Forum “Ural Mining Decade”, vol. 177, 2020.
  • 38. [KOVACS, A.; BORDOS, S.; GARALIU-BUSOI, B.; MIRON, C.; STANILA, S. The analysis of the technological and professional danger factors specific to the works of exploitation of useful rocks from quarries, which can generate risk of accident and/or technological breakdown. In MATEC Web of Conferences - 9th International Symposium on Occupational Health and Safety SESAM 2019, vol. 305, 2020.
  • 39. MELIKA, F.F.; AMER, F.G.M. Proposal guideline for preventive measures toward occupational health hazards for quarries workers. In Egyptian Journal of Health Care, vol. 11, no. 4, 2020, p. 1260-1274.
  • 40. ERSOY, M. The role of occupational safety measures on reducing accidents in marble quarries of Iscehisar region. In Safety Science, vol. 57, 2013, p. 293-302.
  • 41. SECCATORE, J.; ORIGLIASSO, C.; DE TOMI, G. Assessing a risk analysis methodology for rock blasting operations. In Blasting in Mining – New Trends, 2012.
  • 42. KE, L.; CHEN, K.; HU, N.; TAN, M.; ZHANG, G.; MENG, H. Safety risk assessment of blasting in open-pit mine based on SNA. In China Safety Science Journal, vol. 32, issue 10, 2022, p. 48-56.
  • 43. ISO 31073:2022 - Risk management – Vocabulary.
  • 44. ISO 45001:2018 - Occupational health and safety management systems - Requirements with guidance for use.
  • 45. ISO 31000:2018 - Risk management – Guidelines.
  • 46. LALONDE C.; BOURAL, O. Managing risks through ISO 31000: A critical analysis. In Risk Management, vol. 14, 2012, p. 272-300.
  • 47. BJORNSDOTTIR, S.H.; JENSSON, P.; THORSTEINSSON, S.E.; DOKAS, I.M.; DE BOER, R.J. Benchmarking ISO risk management systems to assess efficacy and help identify hidden organizational risk. In Sustainability, vol. 12, issue 9, 2022.
  • 48. KRAUSE M. Praktyczne aspekty doboru metod oceny ryzyka zawodowego. In Zeszyty Naukowe Politechniki Śląskiej, Seria: Organizacja i Zarządzanie, z. 59, 2011, p. 173-190.
  • 49. SPREAFICO, C.; RUSSO, D.; RIZZI, C. A state-of-the-art review of FMEA/FMECA including patents. In Computer Science Review, vol. 25, 2017, p. 19-28.
  • 50. EN IEC 60812:2018 - Failure modes and effects analysis (FMEA and FMECA).
  • 51. WOODCOCK, K. Safety Evaluation Techniques, Ryerson University, Toronto.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2b659f01-6b7a-46e1-bb4d-7b1bfb5a3982
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.