PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influences of process water chemistry on reverse flotation selectivity of iron oxides

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It is critical for water quality in flotation as it dramatically influences the chemical/electrochemical properties of mineral surfaces and their interactions with reagents. Many potential variations could alter the water chemistry: water recirculation, mineral dissolutions, reagent additions, etc. This study aimed to identify the key elements from the recycled water sources affecting the separation efficiency in a typical industrial flotation circuit of iron oxides through a series of bench/micro flotation tests, zeta potential measurement, etc. The built-up and distribution of the dominant cations/anions in the process water from the roughers in the flotation system was also analyzed and recorded by Inductively Coupled Plasma-Optical Emission (ICP-OES) for a period of about three months when the operations were stable. The flotation results pointed out that a concentrate with a sharp increase of 6.0% Fe recovery and 2.5% SiO2 content was obtained by using the recycled tailing water only in comparison by using fresh water. In contrast, a slight uptrend in the grade of Fe but a substantial loss of near 6.5% Fe recovery occurs by using the treated sewage water alone instead. This could attribute to the ion distributions in these water sources, in which Ca2+, Fen+, Mg2+ or SO42ions were determined as the key ions influencing the flotation behaviors of the iron ore. But the competitive effects of Fe3+ ions were more significant than the ones of Ca2+ or Mg2+ ions. And the occurrence of starch could deteriorate the dilution of silicates in concentration induced by Fe3+/Fe2+ ions. It can be explained by zeta potential measurement or solution chemistry of those ions, indicating that at 8.5-9.0, the coating of the precipitates of Fe(OH)3(s) induced by iron ions alters a reverse on the zeta potentials of quartz. The presence of SO42-ions, however, has a positive role in reducing the possibility of slime coating on silicates due to acting as a chelating agent of iron ions.
Rocznik
Strony
art. no. 151839
Opis fizyczny
Bibliogr. 30 poz., rys., wykr.
Twórcy
autor
  • Department of Mineral Processing, Kunming University of Science and Technology, State Key Lab of Complex Nonferrous Metal Resources Clean Utilization, Yunnan, China, 650093
autor
  • Department of Mineral Processing, Kunming University of Science and Technology, State Key Lab of Complex Nonferrous Metal Resources Clean Utilization, Yunnan, China, 650093
autor
  • Department of Mineral Processing, Kunming University of Science and Technology, State Key Lab of Complex Nonferrous Metal Resources Clean Utilization, Yunnan, China, 650093
autor
  • Department of Mineral Processing, Kunming University of Science and Technology, State Key Lab of Complex Nonferrous Metal Resources Clean Utilization, Yunnan, China, 650093
Bibliografia
  • BAES, C.F., MESMER, R.E., 1976. The Hydrolysis of Cations. ed. Wiley. Interscience. New York.
  • BAI, H., LIU, Y., ZHAO, Y., CHEN, T., LI, H, CHEN, L., SONG, S., 2020. Regulation of coal flotation by the cations In the presence of clay. Fuel. 2020, 117590.
  • BREEUWSMA, A., LYKLEMA, J., 1973. Physical and chemical adsorption of ions in the electrical double layer of hematite. J. Colloid Interface Sci. 43, 437-448.
  • BROWN, P.L., EKBERG, C., 2016. Alkaline Earth Metals, Hydrolysis of Metal Ions. Wiley- VCH Verlag GmbH & Co. KGaA. 155–224.
  • CAO, Y., XIE, X., TONG, X., FENG, D., Lv, J., CHEN, Y., SONG, Q., 2021. The activation mechanism of Fe(II) ion-modified cassiterite surface to promote salicylhydroxamic acid adsorption. Miner. Eng. 160, 106707-.
  • CHEN. Y., TONG, X., FENG, X., XIE, X., 2018. Effect of Al(III) ions on the separation of cassiterite and clinochlore through reverse flotation. Miner. 8, 347-358.
  • DOVE, P.M., NIX, C.J., 1997. The influence of the alkaline earth cations, magnesium, calcium, and barium on the dissolution kinetics of quartz, Geochimica et Cosmochimica Acta, 16, 3329-3340.
  • DURATE, R.S., LIMA, R.M.F., LEAO, V.A., 2015. Effect of inorganic and organic depressants on the cationic flotation and surface charge of rhodonite-rhodochrosite. Rev. Esc. Minas. 68, 463-469.
  • FENG, Q., WEN, S., ZHAO, W., CHEN, H., 2018. Interaction mechanism of magnesium ions with cassiterite and quarto surfaces and its response to flotation separation. Sep. Purif. Technol. 206, 239-246.
  • FERREIRA, E.E., KLEIN, B., BRADAO, P.R.G., 2004. The effect of metallic cations on the zeta potential of pure hematite. In particle size enlargement in mineral processing. Proceedings of the Fifth UBC-McGill Biennial International Symposium on Mineral Processing. Edited by LASKOWSKI, J.S., 229-241.
  • FERSTENAU, M.C., MARTIN, C.C., BHAPPU, R.B., 1963. The Role of Hydrolysis in Sulfonate Flotation of Quartz. Reprinted from Trans. 226, 449-454.
  • FLOOD, C., COSGROVE, T., HOWELL, I., REVELL, P., 2006. Effects of electrolytes on adsorped polymer layers: Poly(ethylene oxide) – Silica system. Langmuir 22, 6923-6930.
  • FUERSTENAU, D.W., 2005. The role of sulfate ions in the flotation of non-metallic minerals, the Society for Mining, Metallurgy, and Exploration. in Innovations in Natural Resource Processing, Proceedings of the Jan. D. Miller Symposium edited by YOUNG, C.A., KELLAR, J.J., FREE, M.L., DRELICH, J., KING, R.P., 149-165.
  • HASELHUHN, H.J., CARLSON, J.J., KAWATRA, S.K., 2012. Water chemistry analysis of an industrial selective flocculation dispersion hematite ore concentrator plant. Int. J. Miner. Process. 102–103, 99–106.
  • LI, Y., LARTEY, C., SONG, S., LI, Y., GERSON, A.R., 2018. The fundamental roles of monovalent and divalent cations with sulfates on molybdenite flotation in the absence of flotation reagents. RSC Adv. 8, 23364-23371.
  • LIU, W., MORAN, C.J., VINK, S., 2012. A review of the effect of water quality on flotation. Miner. Eng. 53, 91-100.
  • MANONO, M.S., MATIBIDI, K., THUBAKGALE, C.K., CORIN, K.C., WIESE, J.G., 2017. Water quality in PGM ore flotation: The effect of ionic strength and pH, Mine water and circular economy. IMWA, Finland, 778-784.
  • MICHAUX, B., RUDOLPH, M., REUTER, M.A., 2018. Challenges in predicting the role of water chemistry in flotation through simulation with an emphasis on the influence of electrolytes. Miner. Eng. 125, 252-264.
  • MODI, H.J., FUERSTENAUR, D.W., 1960. Flotation of corundum: an electrochemical interpretation. Trans. AIME. 217, 381-387.
  • MUZENDA, E., 2010. An investigation into the effect of water quality on flotation performance. Int. J. Chem. Mole. Nucl. Mater. Metal. Eng. 4, 562-566.
  • NEVASAIA, D., GUERRERO-RUIZ, A., LOPEZ-GONZALEZ, J.D.D., 1998. Adsorption of polyoxyethylenic nonionic and anionic surfactants from aqueous solution: Effects induced by the addition of NaCl and CaCl2. J. Colloid Interface Sci. 205, 97-105.
  • OFOR, O., 1996. Effect of inorganic ions on oleate adsorption at a Nigerian hematite – Water interface. J. Colloid Interface Sci. 179, 323-328.
  • OZUTSUMI, K., HASEGAWA, E., KURIHARA, M., 1993. Structure of iron (III) and formation of iron(III) thiocyanato complexes in N, N-dimethylacetamide. Polyhedron. 12(18), 2185-2192.
  • RAO, S.R., 2004. Electrical characteristics at interfaces, In: Surface Chemistry of Froth Flotation. 2nd ed. Kluwer Academic/Plenum Publishers, New York.
  • RUAN, Y., ZHANG, Z., LUO, H., XIAO, C., ZHOU, F., CHI, R., 2018. Effects of metal ions on the flotation of apatite, dolomite and quartz. Miner. 8, 1-12.
  • REN, L., QIU, H., ZHANG, Y., NGUYEN, A., ZHANG, M., WEI, P., LONG, Q., 2018. Effects of alkyl ether amine and calcium ions on fine quartz flotation and its guidance for upgrading vanadium from stone coal. Powder Technol. 338, 180-189.
  • Sverjensky, D. A.; Fukushi, K. Anion Adsorption on Oxide Surfaces: Inclusion of the Water Dipole in Modeling the Electrostatics of Ligand Exchange. Environ. Sci. Technol. 2006, 40, 263-271.
  • SOMASUNDARAN, P., GRIEVES, R.B., Advances in Interfacial Phenomena of Particulate/solution/gas Systems: Applications to Flotation Research. American Institute of Chemical Engineers, New York.
  • TAGGART, A.F., ARBITER, N., 1946. The chemistry of collection of non-metallic minerals by amine-type collectors. Trans. AIME. 169, 266-269.
  • WANG, Y., XU, F., 2007. Effects of Metallic Ions on the Flotation of Spodumene and Beryl. J. China U. Min. Techno. 17, 35-39.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2b593463-4f37-4737-9eeb-d7651a66a5f9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.