PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Phase transformations in the nitrided layer during annealing under reduced pressure

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents studies of phase transformations taking place in surface layers of nitrided steels as a result of their annealing at 520 °C for 5 and 10 h. Two steel grades were tested, the unalloyed AISI 1085 and the low-alloy AISI 52100. As a result of glow discharge nitriding, at 570 °C/5 h and 540 °C/12 h, respectively, nitrided layers were produced on the steels, consisting of a surface layer of iron nitrides with the structure of ε + γ′ and γ′ and of similar thickness 25. The study showed that during 5 h of annealing at 520 °C, the iron nitride layer already decomposed, which was documented by the analysis of chemical composition and X-ray analysis of the surface layers of steel. Comparative studies on the hardness distribution of surface layers of nitrided as well as nitrided and subsequently annealed AISI 52100 steels showed that after both 5 and 10 h of annealing, the hardness depth profiles were very similar and the effective thickness of the diffusion layer did not change. The results obtained enabled the demonstration that the emission of nitrogen into the atmosphere during annealing of nitrided steels is not accompanied by diffusion of nitrogen into the base layer. This proves that the iron nitride layer is not a source of nitrogen for the diffusion layer during annealing at reduced pressure.
Rocznik
Strony
146--156
Opis fizyczny
Bibliogr. 20 poz., rys., wykr.
Twórcy
  • Department of Materials Engineering, Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, Czestochowa, Poland
  • Łukasiewicz Research Network - Institute of Precision Mechanics, Warsaw, Poland
  • Department of Materials Engineering, Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, Czestochowa, Poland
  • Department of Materials Engineering, Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, Czestochowa, Poland
  • Department of Production Engineering, Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, Czestochowa, Poland
Bibliografia
  • [1] Lehrer E. Über das Eisen-Wasserstoff-Ammoniak Gleichge-wicht. Zeitschrift Für Elektrochemie. 1930;36:383–93.
  • [2] Somers MAJ. IFHTSE global 21: heat treatment and surface engineering in the twenty-first century: part 14-development of compound layer during nitriding and nitrocarburising; current understanding and future challenges. Int Heat Treat Surf Eng. 2011;5:7–16. https ://doi.org/10.1179/17495 1411X 12956 20725 3429.
  • [3] Michalski J, Tacikowski J, Wach P, Lunarska E, Baum H. Formation of single-phase layer of γ′-nitride in controlled gas nitriding. Met Sci Heat Treat. 2005;47:516–9. https ://doi.org/10.1007/s1104 1-006-0023-0.
  • [4] Małdziński L. Termodynamiczne, kinetyczne i technologiczne aspekty wytwarzania warstwy azotowanej na żelazie i stalach w procesach azotowania gazowego, nr 373. Poznań: Wydawnictwo Politechniki Poznańskiej; 2002.
  • [5] Arabczyk W, Pelka R, Wilk B. Studies of phase transitions occurring in the system of nanocrystalline Fe/NH3/H2. Mater Chem Phys. 2019. https ://doi.org/10.1016/j.match emphy s.2019.12185 3.
  • [6] Moszynska I, Moszynski D, Arabczyk W. Hysteresis in nitriding and reduction in the nanocrystalline iron-ammonia-hydrogen system. Przem Chem. 2009;88:526–9.
  • [7] Malinov S, Böttger AJ, Mittemeijer EJ, Pekelharing MI, Somers MAJ. Phase transformations and phase equilibria in the Fe-N system at temperatures below 573 K. Metall Mater Trans A. 2001;32:59–73. https ://doi.org/10.1007/s1166 1-001-0102-1.
  • [8] Liapina T. Phase transformations in interstitial Fe-N alloys. Stuttgart: Universiitet Stuttgart; 2005.
  • [9] Mittemeijer EJ, Somers MAJ. Thermodynamics, kinetics, and process control of nitriding. Surf Eng. 1997;13:483–97. https ://doi.org/10.1179/sur.1997.13.6.483.
  • [10] Liapina T, Leineweber A, Mittemeijer EJ. Phase transformations in ε-/γ′-iron nitride compound layers in the temperature range of 613 K–693 K. Defect Diffus Forum. 2005;237–240:1147–52. https ://doi.org/10.4028/www.scien tific .net/DDF.237-240.1147.
  • [11] Liapina T, Leineweber A, Mittemeijer EJ. Nitrogen redistribution in ε/γ′-iron nitride compound layers upon annealing. Scr Mater. 2003;48:1643–8. https ://doi.org/10.1016/S1359 -6462(03)00136 -2.
  • [12] Yurovskikh AS, Kardonina NI, Kolpakov AS. Phase transformations in nitrided iron powders. Met Sci Heat Treat. 2015;57:507–14. https ://doi.org/10.1007/s1104 1-015-9913-3.
  • [13] Ratajski J. Wybrane aspekty współczesnego azotowania gazowego pod kątem sterowania procesem. Koszalin: Politechnika Koszalińska, Monografia Wydziału Mechanicznego; 2003.
  • [14] Michalski J, Tacikowski J. Termodynamiczne i kinetyczne aspekty regulowanego azotowania gazowego. Inżynieria Powierzchni. 2019;24:3–10. https ://doi.org/10.5604/01.3001.0013.1487.
  • [15] Maldzinski L, Tacikowski J. ZeroFlow gas nitriding of steels. In: Mittemeijer EJ, Somers MAJ (eds) Thermochemical surface engineering of steels. Elsevier; 2015. pp. 459–483. https ://doi.org/10.1533/97808 57096 524.3.459.
  • [16] Kowalska J, Małdziński L. ZeroFlow-new, environmentally friendly method of controlled gas nitriding used for selected car parts. IOP Conf Ser Mater Sci Eng. 2016;148:012047. https ://doi.org/10.1088/1757-899X/148/1/01204 7.
  • [17] Wołowiec-Stańczyk E. Komputerowe projektowanie procesów obróbki cieplnej, Zesz. Nauk Politech Łódzkiej. 2013;1163.
  • [18] Wołowiec-Korecka E, Kula P, Pawęta S, Pietrasik R, Sawicki J, Rzepkowski A. Neural computing for a low-frictional coatings manufacturing of aircraft engines’ piston rings. Neural Comput Appl. 2019;31:4891–901. https ://doi.org/10.1007/s0052 1-018-03987 -9.
  • [19] Kula P, Wolowiec E, Pietrasik R, Dybowski K, Januszewicz B. Non-steady state approach to the vacuum nitriding for tools. Vacuum. 2013;88:1–7. https ://doi.org/10.1016/j.vacuu m.2012.08.001.
  • [20] Betiuk M, Michalski J, Tacikowski J, Łataś Z. Pomiary grubości warstw azotków żelaza. Inżynieria Powierzchni. 2014;2:60–5.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2b57d9f3-4f0a-43bf-abce-1c0456e41462
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.