PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An in Situ Crystal Growth of Metal Organic Frameworks-5 on Electrospun PVA Nanofibers

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, a simple, general and straightforward method for growing metal-organic frameworks (MOFs) crystals directly on nanofibers is presented. A chelating polymer was first blent with metal cation and then electrospun. The obtained nanofibers were immersed in a linker solution. Metal cations were released and the metal-organic frameworks crystals were grown on the fibers’ surface. In this work, this method was tested with polyvinyl alcohol as chelating polymer, Zn2+ as metal cation and Terephthalic acid as linker. The pair cation/linker corresponds to the MOF-5. The latter is a robust metal organic framework formed from Zn4O nodes with 1,4-benzodicarboxylic acid struts between the nodes. SEM images revealed that the MOF-5 nanocrystals have grown along the PVA/Zn2+ nanofibers that served as the crystals’ growth template by providing the Zn2+ ions. This result was also confirmed by infrared spectroscopy, which indicates the presence of characteristic bands of MOF-5 in the modified nanofibers spectrum. Moreover, the X-ray diffraction showed that MOF-5 material was well crystallized on the nanofibers surface according to a cubic symmetry with a space group Fm-3m and a lattice constant a = 25.8849 Å.
Rocznik
Strony
308--313
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
autor
  • Laboratory for Advanced Materials and Interfaces, University of Monastir, Faculty of Sciences of Monastir, environmental Boulevard 5000 Monastir, Tunisia
autor
  • Laboratory of Textile Physics and Mechanics EA 4365, University of Haute Alsace, 11 rue Alfred Werner 68093 Mulhouse Cedex, France
autor
  • Laboratory of Textile Physics and Mechanics EA 4365, University of Haute Alsace, 11 rue Alfred Werner 68093 Mulhouse Cedex, France
autor
  • Laboratory for Advanced Materials and Interfaces, University of Monastir, Faculty of Sciences of Monastir, environmental Boulevard 5000 Monastir, Tunisia
  • Research Center for Microelectronics and Nanotechnologies. Technopole Sousse, 4000, Sahloul Sousse, Tunisia
autor
  • Laboratory of Textile Physics and Mechanics EA 4365, University of Haute Alsace, 11 rue Alfred Werner 68093 Mulhouse Cedex, France
Bibliografia
  • [1] Zagho, M.M. and Elzatahry, A. (2016). Recent Trends in Electrospinning of Polymer Nanofibers and their Applications as Templates for Metal Oxide Nanofibers Preparation. In Electrospinning - Material, Techniques, and Biomedical Applications Edited by Haider, S. and Haider, A. InTech press.
  • [2] Brown, P. J. and Stevens, K. (2007). Nanofibers and nanotechnology in textiles. CRC Press (Boca Raton Boston New York Washington, DC) and WOODHEAD PUBLISHING LIMITED (Cambridge, England).
  • [3] Wendorff, J.H., Agarwal, S. and Greiner, A. (2012). Electrospinning: Materials, Processing, and Applications. Wiley-VCH Verlag & Co. KGaA (Weinheim, Germany).
  • [4] Li, D., and Xia, Y. (2004). “Electrospinning of nanofibers: reinventing the wheel?”. Advanced materials, 16 (14), 1151-1170.
  • [5] Reneker, D. H., and Yarin, A. L. (2008). Electrospinning jets and polymer nanofibers. Polymer, 49 (10), 2387-2425.
  • [6] Jia, Y. T., Gong, J., Gu, X. H., Kim, H. Y., Dong, J., and Shen, X. Y. (2007). Fabrication and characterization of poly (vinyl alcohol)/chitosan blend nanofibers produced by electrospinning method. Carbohydrate Polymers, 67 (3), 403-409.
  • [7] Wang, X., Chen, X., Yoon, K., Fang, D., Hsiao, B. S., and Chu, B. (2005). High flux filtration medium based on nanofibrous substrate with hydrophilic nanocomposite coating. Environmental science & technology, 39 (19), 7684-7691.
  • [8] Shan, D., Qian, B., Ding, S. N., Zhu, W., Cosnier, S., and Xue, H. G. (2010). Enhanced solid-state electrochemiluminescence of tris (2, 2′-bipyridyl) ruthenium (II) incorporated into electrospun nanofibrous mat. Analytical chemistry, 82 (13), 5892-5896.
  • [9] Greiner, A., and Wendorff, J. H. (2007). Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angewandte Chemie International Edition, 46 (30), 5670-5703.
  • [10] Zheng, J., Zhang, H., Zhao, Z., and Han, C. C. (2012). Construction of hierarchical structures by electrospinning or electrospraying. Polymer, 53 (2), 546-554.
  • [11] Zander, N. E. (2013). Hierarchically structured electrospun fibers. Polymers, 5 (1), 19-44.
  • [12] Khenoussi, N., Drean, E., Schacher, L., Adolphe, D. and Balard, H. (2012). Nanofibers production - Study and development of electro-spinning device. Experimental Techniques, 36 (2), 32–39.
  • [13] Rose, M., Böhringer, B., Jolly M., Fischer, R., Kaskel, S. (2010). MOF Processing by Electrospinning for Functional Textiles. Advanced Engineering Materials, 13 (4), 356-360.
  • [14] Ostermann, R., Cravillon, J., Weidmann, C., Wiebcke, M., and Smarsly, B. M. (2011). Metal–organic framework nanofibers via electrospinning. Chemical Communications, 47 (1), 442-444.
  • [15] Ren, J., Musyoka, N. M., Annamalai, P., Langmi, H. W., North, B. C., and Mathe, M. (2015). Electrospun MOF nanofibers as hydrogen storage media. international journal of hydrogen energy, 40 (30), 9382-9387.
  • [16] Jin, R., Bian, Z., Li, J., Ding, M., Gao, L. (2013). ZIF-8 crystal coatings on a polyimide substrate and their catalytic behaviours for the Knoevenagel. Dalton Transactions, 42 (11), 3936-3940.
  • [17] Lian, Z., Huimin, L., Zhaofei, O. (2014). In situ crystal growth of zeolitic imidazolate frameworks (ZIF) on electrospun polyurethane nanofibers. Dalton Transactions, 43 (18), 6684-6688.
  • [18] Laurila, E., Thunberg, J., P. Argent, S., R. Champness, N., Zacharias, S., Westman, G, Öhrström, L. (2015). Enhanced Synthesis of Metal-Organic Frameworks on the Surface of Electrospun Cellulose Nanofibers. Advanced Engineering Materials, 17 (9), 1282-1286.
  • [19] Kaskel, S. (2016).The Chemistry of Metal-Organic Frameworks Synthesis, Characterization and Applications. Wiley-VCH Verlag GmbH & Co. Weinheim, (Germany).
  • [20] Bradshaw, D., Garai, A. and Huo, J. (2012). Metal–organic framework growth at functional interfaces: thin films and composites for diverse applications. Chemical Society Reviews, 41 (6), 2344-2381.
  • [21] Furukawa, S., Reboul, J., Diring, S., Sumida, K. and Kitagawa, S. (2014). Structuring of metal–organic frameworks at the mesoscopic/macroscopic scale. Chemical Society Reviews, 43 (16), 5700-5734.
  • [22] Falcaro, P., Buso, D., Hill, A.J. and Doherty, C.M. (2012). Patterning Techniques for Metal Organic Frameworks. Advanced Materials, 24 (24), 3153–3168.
  • [23] Yeo, Z.Y., Chai, S-P., Zhu, P.W. and Mohamed, A.R. (2014). An overview: synthesis of thin films/membranes of metal organic frameworks and its gas separation performances. RSC Advances, 4 (97), 54322-54334.
  • [24] Atabey, E., Wei, S., Zhang, X., Gu, H., Yan, X., Huang, Y., Shao, L., He, Q., Zhu, J., Sun, Luyi., Kucknoor, A.S., Wang, A. and Guo, Z.S. (2013). Fluorescent electrospun polyvinyl alcohol/CdSe@ZnS nanocomposite fibers. Journal of Composite Materials, 47 (25), 3175-3185.
  • [25] Li, H., Eddaoudi, M., O’Keeffe, M., and Yaghi, O. M. (1999). Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 402 (6759), 276-279.
  • [26] Sabouni, R., Kazemian, H., and Rohani, S. (2010). A novel combined manufacturing technique for rapid production of IRMOF-1 using ultrasound and microwave energies. Chemical Engineering Journal, 165 (3), 966-973.
  • [27] Assender, H. E., and Windle, A. H. (1998). Crystallinity in poly (vinyl alcohol). 1. An X-ray diffraction study of atactic PVOH. Polymer, 39 (18), 4295-4302.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2b510591-2410-45b1-ae8e-8dde0b9120be
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.