Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We estimate up to universal constants tails of symmetric and to-tally asymmetric 1-dimensional α-stable distributions in terms of functions of the parameters of these distributions. In particular, for values of α close to 2we specify where exactly the tail changes from being Gaussian and starts to behave like in the Pareto distribution.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
321--345
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
- University of Warsaw Banacha 2 Warszawa, Poland
autor
- Warsaw School of Economics Al. Niepodległoś́ci 162, Warszawa, Poland
autor
- University of Warsaw Banacha 2 Warszawa, Poland
Bibliografia
- [1] R. M. Blumenthal and R. K. Getoor, Some theorems on stable processes, Trans. Amer. Math.Soc. 95 (1960), 263-273.
- [2] K. Bogdan, T. Grzywny and M. Ryznar, Density and tails of unimodal convolution semigroups, J. Funct. Anal. 266 (2014), 3543-3571.
- [3] K. Bogdan, T. Grzywny and M. Ryznar, Density and tails of unimodal convolution semigroups, arXiv:1305.0976v1 (2013).
- [4] T. Grzywny and K. Szczypkowski, Estimates of heat kernels of non-symmetric Lévy processes, arXiv:1710.07793v2 (2020).
- [5] O. Kallengerg, Foundations of Modern Probability, Springer, New York, 2002.
- [6] W. Feller, An Introduction to Probability Theory and its Applications, Vol. II, 2nd ed., Wiley, New York, 1971.
- [7] J. P. Nolan, Numerical calculation of stable densities and distribution functions, Comm. Statist. Stoch. Models 13 (1997), 759-774.
- [8] G. Pólya, On the zeros of an integral function represented by Fourier’s integral, Messenger Math. 52 (1923), 185-188.
- [9] W. E. Pruitt, The growth of random walks and Lévy processes, Ann. Probab. 9 (1981), 948-956.
- [10] J. Rosiński, On the series representation of infinitely divisible random vectors, Ann. Probab.18 (1990), 405-430.
- [11] J. Rosiński, Simulations of Lévy processes, in: Encyclopedia of Statistics in Quality and Reliability: Computationally Intensive Methods and Simulation, Wiley, 2008.
- [12] G. Samorodnitsky and M. S. Taqqu, Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance, Chapman and Hall, New York, 1994.
- [13] P. Sztonyk, Transition density estimates for jump Lévy processes, Stochastic Process. Appl. 121(2011), 1245-1265.
- [14] M. Talagrand, Upper and Lower Bounds for Stochastic Processes: Modern Methods and Classical Problems, Ergeb. Math. Grenzgeb. 60, Springer, New York, 2014.
- [15] V. Uchaikin and V. Zolotarev, Chance and Stability: Stable Distributions and their Applications, De Gruyter, Berlin, 2011.
- [16] T. Watanabe, Asymptotic estimates of multi-dimensional stable densities and their applications, Trans. Amer. Math. Soc. 359 (2007), 2851-2879.
- [17] V. M. Zolotarev, One-Dimensional Stable Distributions, Transl. Math. Monogr. 65, Amer. Math. Soc., Providence, RI, 1986.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2b4f8d18-75f2-4cb0-b18c-e618c1d30544