PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Method of design calculation of a hydropulse device for strain hardening of materials

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Metoda projektowania urządzenia hydropulacyjnego do odkształceniowego utwardzania materiałów
Języki publikacji
EN
Abstrakty
EN
The article had expounded of calculation project methodology to a device for strain hardening materials, his power element is connected in one design with a pressure pulse generator and a mechanical accumulator which accumulate potential energy and has the form two parallel installed slotted springs. Proposed calculation project methodology allows using simple dependencies to calculate all basic energy, force and geometrical parameters of the device, which was considered in the article.
PL
W artykule wyjaśniono metodologię projektu obliczeniowego do urządzenia do utwardzania odkształceniowego materiałów, jego element mocy jest połączony w jednym projekcie z generatorem impulsu ciśnienia i akumulatorem mechanicznym, który gromadzi energię potencjalną i ma postać dwóch równolegle zainstalowanych sprężyn szczelinowych. Proponowana metodologia obliczeń projektowych pozwala wykorzystać proste zależności do obliczenia wszystkich podstawowych energii, sił i parametrów geometrycznych urządzenia, co zostało uwzględnione w artykule.
Rocznik
Strony
65--72
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
  • Vinnytsia National Technical University, 95 Khmelnytske shose av., Vinnytsia, 21021, Ukraine
  • Vinnytsia National Technical University, 95 Khmelnytske shose av., Vinnytsia, 21021, Ukraine
  • Vinnytsia National Technical University, 95 Khmelnytske shose av., Vinnytsia, 21021, Ukraine
  • Vinnytsia National Technical University, 95 Khmelnytske shose av., Vinnytsia, 21021, Ukraine
  • Lublin University of Technology, Institute of Electronics and Information Technology, Nadbystrzycka 38A, 20-618 Lublin, Poland
  • Kazakh University Ways of Communications
  • Kazakh University Ways of Communications
Bibliografia
  • [1] Zhang Qinjian, Cao Jianguo, Wang Huiying Ultrasonic surface strengthening of train axle material 30CrMoA, 2016 18th CIPR conference on electro physical and chemical machining, 853-857.
  • [2] K Zaitsev, V Klimenov, M. Loshchilova, C. Polovnicov Ultrasonic plastic deformation of steels, IOP Conf. Series: Material science and engineering 91, 2015 doi:10.1088/1757-899X/91/1/012056.
  • [3] Zaydes SA The current state of finishing-hardening treatment by surface plastic deformation, Bulletin of the Irkutsk State Technical University, 2016. T.20. No. 10 P. 28-34. do: 10.21285 / 1814-3520-2016-10-28-34.
  • [4] Blumenstein Valeriy Yu., Ferranti Alina V. Calculation and justificaton parameters of strengthening technology to produce drill rig shaft gear on the basic of mechanics of technological inheritance. 2016 the 8th Russian-Chinese Symposium. Coal in the 21st century: mining, processing and safety, 265-273.
  • [5] Guan Changbin, Jiao Zongxia A piezoelectric direct-drive servo valve with a novel multi-body contacting spool-driving mechanism: Design, modeling and experiment. 2014, Vol 228(1) 169-185, doi: 10.1177/0954406213483072.
  • [6] Yaroslavtsev V.M. Constructive features of reinforcing devices for rolling with advanced plastic demorraming, Science and Education, MGTU them, N. E. Baumana 2014. №9. P.15- 29 doi: 10.7463 / 0914.0725358.
  • [7] Pat № 103684 Ukraine, IPC (2015, 12) В24В39 / 04. Hydroim pulse vibration damping device for deformation strengthening of parts / Obertyukh R.R., Slabkyy A.V, Maruschak M.V .; Applicant and owner of the Vinnytsia National Technical University. 25.12.2015. Bull No. 24.
  • [8] Obertyukh R.R., Slabkyy A.V, (2015) Devices for vibroturning on the basis of a hydropulse drive / Vinnitsa: VNTU.
  • [9] Obertyukh R.R., Slabkyy A.V Dynamic and mathematical models of a hydropulse vibration damping device for radial vibration analysis with a built-in spherical generator of pressure pulses of parametric type. MOTROL Vol. 15, No 6. ─ S. 29 ─ 42.l.
  • [10] Kuzmachev V. E (1989) Laws and Formulas for Physics - Kyiv: Naukova Dumka.
  • [11] Chuprakov Yu.I. (1979) Hydro-drive and hydropathic means. M.: Mechanical engineering.
  • [12] Biedermann VA (1980) Theory of mechanical vibrations, M.: Ext. School.
  • [13] Karmugin BV (1983) Valve seals of pneumohydrodeaggregates. - M.: Maine-building.
  • [14] Vasilevskyi, O.M. Calibration method to assess the accuracy of measurement devices using the theory of uncertainty, International Journal of Metrology and Quality Engineering, 5 (4), (2014). DOI: 10.1051/ijmqe/2014017.
  • [15] Vasilevskyi, O.M. Advanced mathematical model of measuring the starting torque motors, Technical Electrodynamics, (6), pp. 76-81 (2013).
  • [16] Vasilevskyi, O.M., Yakovlev, M.Y., Kulakov, P.I. Spectral method to evaluate the uncertainty of dynamic measurements, Technical Electrodynamics, 2017 (4), pp. 72-78.
  • [17] Vasilevskyi, O.M. Metrological characteristics of the torque measurement of electric motors, International Journal of Metrology and Quality Engineering, 8, art. no. 7, (2017).
  • [18] Vasilevskyi, O.M., Kulakov, P.I., Ovchynnykov, K.V., Didych, V.M. Evaluation of dynamic measurement uncertainty in the time domain in the application to high speed rotating machinery, International Journal of Metrology and Quality Engineering, 8, art. no. 25, (2017).
  • [19] Vasilevskyi, O.M. Methods of determining the recalibration interval measurement tools based on the concept of uncertainty, Technical Electrodynamics, 2014 (6), pp. 81-88.
  • [20] Vedmitskyi, Y.G., Kukharchuk, V.V., Hraniak, V.F. New nonsystem physical quantities for vibration monitoring of transient processes at hydropower facilities, integral vibratory accelerations // Przeglad Elektrotechniczny. -2017. - R. 93 NR 3. – P. 69-72.
  • [21] Kukharchuk, V.V., Kazyv , S.S., Bykovsky, S.A., Discrete wavelet transformation in spectral analysis of vibration processes at hydropower units. // Przeglad Elektrotechniczny. - 2017. - R. 93 NR 5. – P. 65-68.
  • [22] Kukharchuk V.V., Hraniak V.F., Vedmitskyi Y.G., Bogachuk V.V., and etc. "Noncontact method of temperature measurement based on the phenomenon of the luminophor temperature decreasing", Proc. SPIE 10031, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2016, 100312F (28 September 2016).
  • [23] Kukharchuk V.V., Bogachuk V.V., Hraniak V.F., Wójck W., Suleimenov B., KarnakovaG., "Method of magneto-elastic control of mechanic rigidity in assemblies of hydropower units", Proc. SPIE 10445, Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments 2017, 104456A (7 August 2017).
  • [24] Pidchenko S., Taranchuk A., Invariant piezoresonance devices based on adaptive multifrequency systems with a predictive standard, Informatyka Automatyka Pomiary w Gospodarce i Ochronie Środowiska IAPGOŚ 8(1) (2018), 20- 23.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2b413a3e-7ab4-4db0-93d7-7c755a7767b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.