Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Air quality analyses were conducted in sports facilities at the Silesian University of Technology in Poland, with specific focus on training rooms occupied by students. The study aimed to assess the impact of indoor air quality (IAQ) on human health, taking into consideration various ventilation methods and the number of individuals exercising indoors. Air samples were collected from five training rooms in three sports facilities. The results indicate that outdoor air primarily influences air quality in sports facilities. Internal factors, such as the number of students, floor surfaces and mattresses, influenced pollutant concentrations (CO2 and PM2.5). Overall, CO2 levels remained within safe limits, but fluctuations occurred due to physical activity, reaching as high as 1859.7 ppm. The average median concentration of indoor PM2.5 was 16.7 μg/m3, while outdoor levels averaged 12.2 μg/m3. A correlation between indoor and outdoor PM2.5 pollution underscores the importance of using air purifiers to enhance air quality in sports halls.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
37--62
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
autor
- Silesian University of Technology, Faculty of Energy and Environmental Engineering, Department of Air Protection
autor
- Institute of Environmental Engineering, Polish Academy of Sciences
Bibliografia
- 1. Alves CA, et al. (2013). Indoor Air Quality in Two University Sports Facilities. Taiwan Association for Aerosol Research, Aerosol Air Qual. Res., 13: 1723–1730. https://doi.org/10.4209/aaqr.2013.02.0045
- 2. Andrade, A. et al., (2018). Fitness centers demonstrate CO2 concentration levels above recommended standards. Acta Scientiarum Health Science, 40. DOI: 10.4025/actascihealthsci.v40i1.35768
- 3. ASHRAE Board of Directors, (2022). Position Document on Indoor Carbon Dioxide. Retrieved from ASHRAE website: https://www.ashrae.org/File%20Library/About/Position%20Documents/PD_IndoorCarbonDioxide_2022.pdf.
- 4. ASHRAE, (2019). Standard 62.1-2019: Ventilation for Acceptable Indoor Air Quality. Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.
- 5. Bralewska, K. et al., (2022). Indoor air quality in sports center: Assessment of gaseous pollutants. Building and Environment, 208, 108589. DOI: https://doi.org/10.1016/j.buildenv.2021.108589.
- 6. Branis, M., & Safranek, J., (2011). Characterization of coarse particulate matter in school gyms. Environmental Research, 111(4), 485–491.
- 7. Bruce, R.M., (2017). The control of ventilation during exercise: a lesson in critical thinking. Advances in Physiology Education, 41(4), 539–547.
- 8. BUCS, (2020). British Universities & Colleges Sport: “The Value Of University Sport and Physical Activity”.
- 9. Bugaj, S., & Kosiński, P., (2018). Thermal comfort of the sport facilities on the example of indoor tennis court. ENERGODOM 2018 IOP Publishing, IOP Conf. Series: Materials Science and Engineering, 415, 012024.
- 10. Castro, A. et al., (2015). Indoor aerosol size distributions in a gymnasium. Science of the Total Environment, 178–186.
- 11. CSN-EN 12341, (2014). Ambient air – Standard gravimetric measurement method for the determination of the PM10 or PM2.5 mass concentration of suspended particulate matter.
- 12. Dumith, S.C., et al., (2011). Physical activity change during adolescence: a systematic review and a pooled analysis. International Journal of Epidemiology, 40(3), 685–698. doi:10.1093/ije/dyq272
- 13. EN15251:2007. (2007). Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting.
- 14. European Commission, (2014). Special Eurobarometer 412: Sport and physical activity. Retrieved from https://ec.europa.eu/commfrontoffice/publicopinion/archives/ebs/ebs_412_en.pdf
- 15. European Union, (2015). Guidelines on indoor air quality: Indoor air quality & its impact on man. https://ec.europa.eu/environment/air/pdf/indoor_air/guidelines_indoor_air_quality_en.pdf
- 16. Gabriel, M.F., et al., (2019). Assessment of the air quality in 20 public indoor swimming pools located in the Northern Region of Portugal. Environment International, 133, 105274.
- 17. Gatterer, H. et al., (2021). Practicing Sport in Cold Environments: Practical Recommendations to Improve Sport Performance and Reduce Negative Health Outcomes. Int J Environ Res Public Health, 18(18), 9700. doi: 10.3390/ijerph18189700
- 18. https://www.bucs.org.uk/static/c42d7259-5679-4c3a-aa44c439044a15ff/The-value-ofuniversity-sport-and-physical-activity.pdf.
- 19. Jędrak, J. et al., (2017). Wpływ zanieczyszczeń powietrza na zdrowie. Cracow: Krakowski Alarm Smogowy.
- 20. Kim, S. et al., (2019). Characteristics of PM2.5 and CO2 concentrations in indor sports facilities in Korea. Aerosol and Air Quality Research, 19(4), 905–916.
- 21. Kjonniksen, L., & Anderssen, N. (2018). Physical activity among adolescents in Norway: A 20-year follow-up study. Journal of Physical Activity and Health, 15(5), 359–364. doi:10.1123/jpah.2017-0373
- 22. Klepeis, N.E. et al., (2001). The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. Journal of Exposure Analysis and Environmental Epidemiology, 11(3), 231–252.
- 23. Koivisto, T., (2021). Air contaminants in different indoor sports facilities. Master thesis. Supervisor: Prof. Heidi.
- 24. Kolarzyk, E. et al., (2019). Indoor air quality in fitness centers in Poland. International Journal of Environmental Research and Public Health, 16(4), 536.
- 25. Kowalski, P. et al., (2020). Indoor air quality assessment of a sports facility equipped with a ventilated air dome. Building and Environment, 173, 106732.
- 26. Kuskowska, K. et al., (2015). Analiza możliwości wystąpienia zagrożeń ze strony pyłu zawieszonego podczas treningow sportowych na przykładzie wybranych warszawskich obiektow rekreacyjnych. Zeszyty Naukowe SGSP, 54(2).
- 27. Lorenzo, S. et al., (2010). Influence of high environmental temperature on peripheral oxygen saturation during maximal exercise. Journal of Applied Physiology (Bethesda, Md.: 1985), 109, 1140–1147.
- 28. Mainka, A., Wlazło, P., (2018). Indoor air quality in fitness centers – a case study from Wrocław, Poland. Building and Environment, 129, 152–161.
- 29. Mainka, A., Wlazło, P. (2018a). Indoor air quality in sports facilities in Poland. Building and Environment, 142, 394–404.
- 30. Majcher, A. et al., (2015). Concentrations of PM10 and PM2.5 in fitness centers in Krakow, Poland – implications for public health. Environmental Monitoring and Assessment, 187(3), 1–11. doi: 10.1007/s10661-015-4369-8
- 31. McKenzie, D.C., Boulet, L.P., (2008). Asthma, outdoor air quality and the Olympic Games. CMAJ, 179(6), 543–548. doi: 10.1503/cmaj.080982
- 32. Morawski, L., Bofinger, N.D., Maroni, M., (ed.), (1995). Indoor Air: An Integrated Approach. Elsevier Science Ltd, pp. 419–423.
- 33. National Youth Sports Strategy Report, (2019). Office Of The Assistant Secretary For Health, https://health.gov/sites/default/files/2019-10/National_Youth_Sports_Strategy.pdf.
- 34. Nazar, W., Niedoszytko, M., (2022). Air Pollution in Poland: A 2022 Narrative Review with Focus on Respiratory Diseases. International Journal of Environmental Research and Public Health, 19(2), 895. doi: 10.3390/ijerph19020895
- 35. NCAA, (2018). Indoor Air Quality. Retrieved from https://www.ncaa.org/sports/2017/9/14/air-quality.aspx.
- 36. OSHA, (2021). Indoor Air Quality. In: OSHA Technical Manual (OTM). Retrieved from https://www.osha.gov/dts/osta/otm/otm_iii/otm_iii_2.html.
- 37. Qin, Y., et al., (2017). Characteristics of particulate matter pollution in fitness centers. Science of the Total Environment, 580, 1298–1306.
- 38. Raitakari, O., (2005). Physical activity from childhood to adulthood: A 21-year tracking study. American Journal of Preventive Medicine, 28(3), 267–273.
- 39. Rogula-Kozłowska, W. et al., (2013). Hazardous Compounds in Urban Pm in the Central Part of Upper Silesia (Poland) in Winter. Archives of Environmental Protection, 39.
- 40. Rozporządzenie Ministra Zdrowia z 17 lutego 2004 r. w sprawie szczegółowych wymagań sanitarnych, jakim powinny odpowiadać zakłady fryzjerskie, kosmetyczne, tatuażu i odnowy biologicznej (Polish Journal of Laws/Dz.U. 2004 no. 31).
- 41. Rys, A., Samek, L., Stegowski, Z. et al., (2022). Comparison of concentrations of chemical species and emission sources PM2.5 before pandemic and during pandemic in Krakow, Poland. Sci Rep, 12, 16481. https://doi.org/10.1038/s41598-022-21012-x
- 42. Siwiński, W., Rasińska, R., (2015). Aktywność fizyczna jako zasadniczy cel stylu życia i zdrowia człowieka. Pielęgniarstwo Polskie, no. 3(56).
- 43. Szmit, S., Balsam, P., Opolski, G., (2009). Wzór wentylacji wysiłkowej u chorych z przewlekłą niewydolnością serca. Kardiologia po Dyplomie, Vol. 8, No. 2.
- 44. Tsai, S.S., Chen, C.C., Yang, C.Y., (2022).The impacts of reduction in ambient fine particulate (PM2.5) air pollution on life expectancy in Taiwan. J Toxicol Environ Health A, 17;85(22):913–920. doi: 10.1080/15287394.2022.2110343
- 45. Viana, M., Karatzas, K., Arvanitis, A., Reche, C., Escribano, M., Ibarrola-Ulzurrun, E., Adami, P.E., Garrandes, F., Bermon, S., (2022). Air Quality Sensors Systems as Tools to Support Guidance in Athletics Stadia for Elite and Recreational Athletes. Int J Environ Res Public Health, 17;19(6):3561. doi: 10.3390/ijerph19063561
- 46. Wang, M., Li, L., Hou, C., Guo, X., Fu, H., (2022). Building and Health: Mapping the Knowledge Development of Sick Building Syndrome. Buildings, 12, 287. https://doi.org/10.3390/buildings12030287
- 47. Widziewicz, K., Rogula-Kozlowska, W., Loska, K., Kociszewska, K., Majewski, G., (2018). Health Risk Impacts of Exposure to Airborne Metals and Benzo(a)Pyrene during Episodes of High PM10 Concentrations in Poland. Biomed Environ Sci., 31(1):23–36. doi: 10.3967/bes2018.003. PMID: 29409582
- 48. Zhang, D., Ortiz, M.A., Bluyssen, P.M., (2022). A review on indoor environmental quality in sports facilities: Indoor air quality and ventilation during a pandemic. Indoor Built Environ., 32(5):831–51. doi: 10.1177/1420326X221145862
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2b3580ff-82d4-43f0-b991-dbf1e7767ee9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.