PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An Optimization Wavelet Method for Multi Variable-order Fractional Differential Equations

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a new operational matrix of variable-order fractional derivative (OMV-FD) is derived for the second kind Chebyshev wavelets (SKCWs). Moreover, a new optimization wavelet method based on SKCWs is proposed to solve multi variable-order fractional differential equations (MV-FDEs). In the proposed method, the solution of the problem under consideration is expanded in terms of SKCWs. Then, the residual function and its errors in 2-norm are employed for converting the problem under study to an optimization one, which optimally chooses the unknown coefficients. Finally, the method of constrained extremum is applied, which consists of adjoining the constraint equations obtained from the given initial conditions to the object function obtained from residual function by a set of unknown Lagrange multipliers. The main advantage of this approach is that it reduces such problems to those optimization problems, which greatly simplifies them and also leads to obtain a good approximate solution for them.
Wydawca
Rocznik
Strony
255--273
Opis fizyczny
Bibliogr. 53 poz., tab., wykr.
Twórcy
  • Department of Mathematics, Fasa University, Fasa, Iran
  • The Lab. of Quantum Information Processing, Yazd University, Yazd, Iran
autor
  • Engineering School (DEIM), University of Tuscia, Viterbo, Italy
autor
  • Department of Mathematics, School of Humanities and Sciences, SASTRA University, Tamilnadu, India
Bibliografia
  • [1] Podlubny I. Fractional Differential Equations. San Diego: Academic Press; 1999.
  • [2] Bhrawy AH, Taha TM, Machado JAT. A review of operational matrices and spectral techniques for fractional calculus. Nonlinear Dyn. 2016; 81: 1023-1052.
  • [3] Bhrawy AH, Zaky MA. Numerical algorithm for the variable-order Caputo fractional functional differential equation. Nonlinear Dyn. 2016; p. 1-9.
  • [4] Pedro HTC, Kobayashi MH, Pereira JMC, Coimbra CFM. Variable order modeling of diffusive convective effects on the oscillatory flow past a sphere. J Vib Control. 2008; 14: 1569-1672.
  • [5] Ramirez LES, Coimbra CFM. On the selection and meaning of variable order operators for dynamic modelling. Int J Differ Equ. 2010; 2010: 846107, 16 pp.
  • [6] Ramirez LES, Coimbra CFM. On the variable order dynamics of the nonlinear wake caused by a sedimenting particle. Physica D. 2011; 240: 1111-1118.
  • [7] Sun HG, Chen W, Wei H, Chen YQ. A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems. Eur Phys J Spec Top. 2011; 193: 185-192.
  • [8] Shyu JJ, Pei SC, Chan CH. An iterative method for the design of variable fractional-order FIR differintegrators. Signal Process. 2009; 89: 320-327.
  • [9] Coimbra C. Mechanics with variable-order differential operators. Ann Phys. 2003; 12 (11-12): 692-703.
  • [10] Chechkin AV, Gorenflo R, Sokolov IM. Fractional diffusion in inhomogeneous media. J Phys A: Math. Gen. 2005; 38: 679-684.
  • [11] Santamaria F, Wils S, Schutter ED, Augustine GJ. Anomalous diffusion in Purkinje cell dendrites caused by spines. Neuron. 2006; 52: 635-648.
  • [12] Sun HG, Chen W, Chen YQ. Variable-order fractional differential operators in anomalous diffusion modeling. Phys. A. 2009; 388: 4586-4592.
  • [13] San HG, Chen YQ, Chen W. Randomorder fractional differential equation models. Sign Process. 2011; 91: 525-530.
  • [14] Unarov S, Steinberg S. Variable order differential equations and diffusion with changing modes. Zeitschrift fr Analysis und ihre Anwendungen. 2009; 28: 431-450.
  • [15] Lorenzo CF, Hartley TT. Variable order and distributed order fractional operators. Nonlinear Dyn. 2002: 29: 57-98.
  • [16] Liu Y. Fang Z, Li H, He S. A mixed finite element method for a time-fractional fourth-order partial differential equation. Appl Math Comput. 2014; 243: 703-717.
  • [17] Atangana A, Baleanu D. Numerical solution of a kind of fractional parabolic equations via two difference schemes. Abstr Appl Anal. 2013; 2013: 828764,8.
  • [18] Meerschaert MM, Tadjeran C. Finite difference approximations for fractional advection dispersion equations. J Comput Appl Math. 2004; 172: 65-77.
  • [19] Zhang Y. A finite difference method for fractional partial differential equation. Appl Math Comput. 2009; 215: 524-529.
  • [20] Tadieran C, Meerschaert MM, Scheffler HP. A second order accurate numerical approximation for the fractional diffusion equation. J Comput Phys. 2006; 213: 205-213.
  • [21] Lin R. Liu F, Anh V, Turner I. Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation. Applied Mathematics and Computation. 2009; 212: 435-445.
  • [22] Shen S, Liu F, Chen J, Turner I, Anh V. Numerical techniques for the variable order time fractional diffusion equation. Applied Mathematics and Computation. 2012; 218: 10861-10870.
  • [23] Chen Y, Liu L, Li B, Sun Y. Numerical solution for the variable order linear cable equation with Bernstein polynomials. Applied Mathematics and Computation. 2014; 238: 329-341.
  • [24] Manohar MGP. Matrix method for numerical solution of space-time fractional diffusion-wave equations with three space variables. Afr Mat. 2014; 25: 161-181.
  • [25] Sweilam NH, Khader MM, Almarwm HM. NUMERICAL STUDIES FOR THE VARIABLE-ORDER NONLINEAR FRACTIONAL WAVE EQUATION. Fractional Calculus and Applied Analysis. 2012; 15: 669-683.
  • [26] Sun H, Chen W, Li C, Chen Y. FINITE DIFFERENCE SCHEMES FOR VARIABLE-ORDER TIME FRACTIONAL DIFFUSION EQUATION. International Journal of Bifurcation and Chaos. 2012; 22 (4): 1250085 (16 pages).
  • [27] Zhung P, Liu F, Anh V, Turner I. NUMERICAL METHODS FOR THE VARIABLE-ORDER FRACTIONAL ADVECTION-DIFFUSION EQUATION WITH A NONLINEAR SOURCE TERM. SIAM J NUMER ANAL. 2009; 47 (3): 1760-1781.
  • [28] Atangana A. On the stability and convergence of the time-fractional variable order telegraph equation. Journal of Computational Physics. 2015; 293: 104-114.
  • [29] Chen YM, Wei YQ, Liu DY, Yu H. Numerical solution for a class of nonlinear variable order fractional differential equations with Legendre wavelets. Applied Mathematics Letters. 2015; 46: 83-88.
  • [30] P Zhuang VA F Liu, Turner I. Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. Society for Industrial and Applied Mathematics. 2009; 47 (3): 1760-1781.
  • [31] Bhrawy AH, Zaky MA. Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation. Nonlinear Dyn. 2016; 80 (1): 101-116.
  • [32] Zayernouri M, Karniadakis GE. Fractional spectral collocation methods for linear and nonlinear variable order FPDEs. J Comput Phys. 2015; 80(1): 312-338.
  • [33] Li XY, Wu BY. A numerical technique for variable fractional functional boundary value problems. Appl Math Lett. 2015; 43: 108-113.
  • [34] Abdelkawy MA, Zaky MA, Bhrawy AH, Baleanu D. Numerical simulation of time variable fractional order mobile-immobile advection-dispersion model. Romanian Reports in Physics. 2015; 67: 773-791.
  • [35] Heydari MH, Hooshmandasl MR, Ghaini FMM, Fereidouni F. Two-dimensional Legendre wavelets for solving fractional Poisson equation with Dirichlet boundary conditions. Engineering Analysis with Boundary Elements. 2013; 37 (11): 1331-1338.
  • [36] Heydari MH, Hooshmandasl MR, Ghaini FMM, Cattani C. Wavelets method for the time fractional diffusion-wave equation. Physics Letters A. 2015; 379: 71-76.
  • [37] Heydari MH, Hooshmandasl MR, Ghaini FM, Cattani C. Wavelets method for solving systems of nonlinear singular fractional Volterra integro-differential equations. Commun Nonlinear Sci Numer Simulat. 2014; 19: 37-48.
  • [38] Heydari MH, Hooshmandasl MR, Mohammadi F. Legendre wavelets method for solving fractional partial differential equations with Dirichlet boundary conditions. Applied Mathematics and Computation. 2014; 234: 267-276.
  • [39] Heydari MH, Hooshmandasl MR, Mohammadi F. Two-Dimensional Legendre Wavelets for Solving Time-Fractional Telegraph Equation. Advances in Applied Mathematics and Mechanics. 2014; 6 (2): 247-260.
  • [40] Heydari MH, Hooshmandasl MR, Cattani C, Li M. Legendre Wavelets Method for Solving Fractional Population Growth Model in a Closed System. Mathematical Problems in Engineering. 2013; 2013: 1-8.
  • [41] Canuto C, Hussaini M, Quarteroni A, Zang T. Spectral Methods in Fluid Dynamics. 1988.
  • [42] Fornberg B. A Practical Guide to Pseudospectral Methods. 1996.
  • [43] Babolian E, Hosseini MM. A Modified Spectral Method for Numerical Solution of Ordinary Differential Equations with Non-analytic Solution. Applied Mathematics and Computation. 2002; 132: 341-351.
  • [44] Mohammadia F, Hosseini MM, Mohyud-Din ST. Legendre wavelet Galerkin method for solving ordinary differential equations with non-analytic solution. International Journal of Systems Science 2011; 42 (4): 579-585.
  • [45] Heydari MH, Hooshmandasl MR, Ghaini FMM, Cattani C. Wavelets method for solving fractional optimal control problems. Applied Mathematics and Computation. 2016; 286: 139-154.
  • [46] Heydari MH, Hooshmandasl MR, Loghmania GB, Cattani C. Wavelets Galerkin method for solving stochastic heat equation. International Journal of Computer Mathematics. 2015; p. 1-18.
  • [47] W M Abd-Elhameed EHD, Youssri YH. New spectral second kind Chebyshev wavelets algorithms far solving linear and nonlinear second order differential equation involving singular and Bratu type equations. Abstract and Applied Analysis. 2013; 2013: ID 715756.
  • [48] Mohammadi F. Second kind Chebyshev wavelet Galerkin method for stochastic Ito-Volterra integral equations. Mediterranean Journal of Mathematics. 2015; p. 1-19.
  • [49] Gupta AK, Ray SS. Numerical treatment for the solution of fractional fifth-order Sawada-Kotera equation using second kind Chebyshev wavelet method. Appl Math Model. 2015; 39 (19): 5121-5130.
  • [50] Wang Y, Fan Q The second kind Chebyshev wavelet method for solving fractional differential equations. Applied Mathematics and Computation. 2012; 218 (17): 8592-8601.
  • [51] Zhu L, Fan Q. Solving fractional nonlinear Fredholm integro-differential equations by the second kind Chebyshev wavelet. Commun Nonlinear Sci Numer Simul. 2012; 17 (6): 2333-2341.
  • [52] Selvi MSM, Hariharan G. Wavelet-Based Analytical Algorithm for Solving Steady-State Concentration in Immobilized Glucose Isomerase of Packed-Bed Reactor Model. The Journal of membrane biology. 2016; p. 1-10.
  • [53] Gu JS, Jiang WS. The Haar wavelets operational matrix of integration. International Journal of Systems Science. 1996; 27: 623-628.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2b2e3b81-dd58-4dde-941d-b0e9da34da8c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.