Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this article, compliance optimization with the steepest descent method of the hand drill bits shapes for metal drilling is presented. The analysis of stress, displacements and compliance of the solid with random shape can be performed using the finite element method. In the case of a high number of optimization iterations, each analysis needs automatic modifications of geometry, mesh and boundary conditions. The Open CASCADE library can be used in the fast and automatic construction of modified models. It allows for fast reanalysis for each derivative of the objective function in the optimization process. The motivation of this research is to fill the gap in the literature on drilling technology. Most of the contemporary research is devoted to the oil and gas industry, while optimization of the hand drill bits used in metal drilling is rare. Compliance optimization allows us to find the shape which guarantees a greater stiffness for the specified loading conditions and a given amount of material. Although the obtained compliance was low, further experimental research would be needed to apply new solutions in drilling practice. This will involve the construction of the drill bit tips and the development of a heat treatment process.
Wydawca
Czasopismo
Rocznik
Tom
Strony
375--398
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
- Faculty of Mechanical Engineering,Casimir Pulaski Radom University, Radom, Poland
Bibliografia
- [1] L.Y. Ropyak, T.O. Pryhorovska, and K.H. Levchuk. Analysis of materials and modern technologies for PDC drill bit manufacturing. Progress in Physics of Metals, 21(2):274–301, 2020, doi: 10.15407/ufm.21.02.274.
- [2] I. Kessai, S. Benammar, M.Z. Doghmane, and K.F. Tee. Drill bit deformations in rotary drilling systems under large-amplitude stick-slip vibrations.Applied Sciences, 10(18):6523, 2020, doi: 10.3390/APP10186523.
- [3] Z. Wu, W. Zhang, R. Yuan, and J. Liu. Buckling and dynamic analysis of drill string system in horizontal wells. Nonlinear Dynamics, 112:4147–4168, Mar. 2024, doi: 10.1007/s11071-023- 09100-7.
- [4] L. Chen, Q. cao, Q. Qi, S. Niu, Y. Yang, X. Chen, Z. Zhao, and B. Wu. Development and application of hobbing-cone hybrid PDC bit. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 9:139, 2023, doi: 10.1007/s40948-023-00679-0.
- [5] A. Nautiyal and A. K. Mishra. Drill bit selection and drilling parameter optimization using machine learning. In IOP Conference Series: Earth and Environmental Science, 1261:012027, 2023. doi: 10.1088/1755-1315/1261/1/012027.
- [6] L.Q. Wang, M.J. Shao, W. Zhang, Z.P. Xiao, S. Yang, and M.H. Yang. Prediction and analysis of PDC bit wear in conglomerate layer with machine learning and finite-element method. Geofluids, 2022:4324202, 2022. doi: 10.1155/2022/4324202.
- [7] M. Kapitaniak, V.V. Hamaneh, and M. Wiercigroch. Torsional vibrations of helically buckled drill-strings: Experiments and FE modelling. Journal of Physics: Conference Series, 721:012012, 2016. doi: 10.1088/1742-6596/721/1/012012.
- [8] O.V. Vashchilina, I.V. Lebedyeva, and O.I. Bilobrytska. Modeling and numerical research of the self-excitation phenomenon of the drill bit whirlings vibrations. Bulletin of the Taras Shevchenko National University of Kyiv. Physics and Mathematics, 2019(1):28–33, 2019, doi: 10.17721/1812-5409.2019/1.5. (in Ukrainian).
- [9] M. Kanzari, I.M. Shahin, M.Y. Alqaradawi, and B. Balachandran. Drill string nonlinear vibrations: Experimental studies and finite-element analysis. Journal of Physics: Conference Series, 1075:012010, 2018. doi: 10.1088/1742-6596/1075/1/012010.
- [10] V. Svitlytskyi, S. Iagodovskyi, and N. Bilenko. Effect of vibration dampers on the dynamic state of a drill string. Technology Audit and Production Reserves, 5(1(73)):32–36, 2023, doi: 10.15587/2706-5448.2023.290145.
- [11] M. Bembenek, Y. Grydzhuk, B. Gajdzik, L. Ropyak, M. Pashechko, O. Slabyi, A. Al-Tanakchi, and T. Pryhorovska. An analytical–numerical model for determining “drill string–wellbore” frictional interaction forces. Energies, 17(2):301, 2024, doi: 10.3390/en17020301.
- [12] G. Alajmo, U. Schlegel, B. Gueorguiev, R. Matthys, and E. Gautier. Plunging when drilling: effect of using blunt drill bits. Journal of Orthopaedic Trauma, 26(8):482–487, 2012, doi: 10.1097/BOT.0b013e3182336ec3.
- [13] E. Sharapov, X. Wang, E. Smirnova, and J.P. Wacker. Wear behavior of drill bits in wood drilling resistance measurements. Wood and Fiber Science, 50(2):154–166, 2018, doi: 10.22382/wfs-2018-017.
- [14] S.G. Moseley. Reinforced concrete drilling with cemented tungsten carbide drill bits: wear and fracture mechanisms and predictive failure analysis based on finite element modelling and weibull. [Online]. Available: https://www.researchgate.net/publication/353038357
- [15] O. Tekinalp and A.G. Ulsoy. Modeling and finite element analysis of drill bit vibrations. Journal of Vibration and Acoustics, 111(2):148–155, 1989. doi: 10.1115/1.3269835.
- [16] A.G. Ulsoy, O. Tekinalp, and E. Lenz. Dynamic modeling of transverse drill bit vibrations. CIRP Annals, 33(1):253–258, 1984. doi: 10.1016/S0007-8506(07)61420-6.
- [17] O. Tekinalp and A.G. Ulsoy. Modeling of drill bit transverse vibrations. In Proceedings SPIE 0955, Industrial Laser Interferometry II, 1988. doi: 10.1117/12.947677.
- [18] Ł. Bołoz. Influence of the drill bit tip geometry on the rotary drilling process performed with a hand-held hydraulic drill. Production Engineering Archives, 29(3):304–310, 2023, doi: 10.30657/pea.2023.29.35.
- [19] M.J. Jeong, S.W. Lee, W.K. Jang, H.J. Kim, Y.H. Seo, and B.H. Kim. Prediction of drill bit breakage using an infrared sensor. Sensors, 21(8):2808, 2021, doi: 10.3390/s21082808.
- [20] R. Zulrian Aldio and Z. Mustafa. Drill bit selection using Design of Experiments (DoE) method. Journal of Renewable Energy and Mechanics, 03(01):39–44, 2020. doi: 10.25299/rem.2020.vol3(01).4597.
- [21] R. Çakiroˇglu and A. Acir. Optimization of cutting parameters on drill bit temperature in drilling by Taguchi method. Measurement, 46(9):3525–3531, 2013. doi: 10.1016/j.measurement.2013.06.046.
- [22] G. Allaire and O. Pantz, Structural Optimization with FreeFem++, Nov. 2005.
- [23] P. Kołakowski, M. Wikło, and J. Holnicki-Szulc. The virtual distortion method—a versatile reanalysis tool for structures and systems. Structural and Multidisciplinary Optimization, 36(3): 217–234, 2008. doi: 10.1007/s00158-007-0158-7.
- [24] R. Król. The software for hand drill bit gradient shape optimization (Matlab + Open CASCADE Python script). Zenodo, Aug. 2024. doi: 10.5281/zenodo.13365716.
- [25] T. Paviot et al. Open Cascade Software Library. https://dev.opencascade.org/project/pythonocc, 2024.
- [26] EDF-CEA, Salome Meca. www.salome-platform.org, 2021.
- [27] FreeCAD Team, FreeCAD. www.freecad.org, 2001.
- [28] C. Geuzaine, J.-F. Remacle, GMSH. gmsh.info, 1997.
- [29] J. Hapke. MATLAB Crashes when using conda environment other than base. In Matlab Software Discussion Forum, MathWorks, 2019.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2b20facc-7a5f-43d9-bd14-4ca07cb531f6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.