Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We propose a method for determining the probabilistic characteristics of the M/G/1/m queueing system with the random dropping of arrivals and distribution of the service time depending on the queue length. Two sets of service modes, with the service time distribution functions Fn (x) and Fn (x) respectively, are used according to the twothreshold hysteretic strategy. The Laplace transforms for the distribution of the number of customers in the system during the busy period and for the distribution function of the length of the busy period are found. The developed algorithm for calculating the stationary characteristics of the system is tested with the help of a simulation model constructed with the assistance of GPSS World tools.
Rocznik
Tom
Strony
197--210
Opis fizyczny
Bibliogr. 12 poz., rys., tab.
Twórcy
autor
- Ivan Franko National University of Lviv Lviv, Ukraine
autor
- Institute of Mathematics, Czestochowa University of Technology Częstochowa, Poland
Bibliografia
- [1] Chydziński A., Nowe modele kolejkowe dla węzłów sieci pakietowych, Pracownia Komputerowa Jacka Skalmierskiego, Gliwice 2013.
- [2] Tikhonenko O., Kempa W.M., Queue-size distribution in M/G/1-type system with bounded capacity and packet dropping, Communications in Computer and Information Science 2013, 356, 177-186.
- [3] Kempa W.M., A direct approach to transient queue-size distribution in a finite-buffer queue with AQM, Applied Mathematics and Information Sciences 2013, 7, 3, 909-915.
- [4] Zhernovyi K.Yu., Zhernovyi Yu.V., Mθ/G/1/m and Mθ/G/1 systems with the service time dependent on the queue length, Journal of Communicat. Technology and Electronics 2013, 58, 12, 1267-1275.
- [5] Zhernovyi Yu., Zhernovyi K., Potentials Method for Threshold Strategies of Queueing, LAP Lambert Academic Publishing, Saarbrücken 2015 (in Russian).
- [6] Zhernovyi K.Yu., Stationary characteristics of the Mθ/G/1/m system with the threshold functioning strategy, Journal of Communicat. Technology and Electronics 2011, 56, 12, 1585-1596.
- [7] Zhernovyi Yu., Kopytko B., The potentials method for a closed queueing system with hysteretic strategy of the service time change, Journal of Applied Mathematics and Computational Mechanics 2015, 14(2), 131-143.
- [8] Zhernovyi Yu.V., Zhernovyi K.Yu., Method of potentials for a closed system with queue length dependent service times, J. of Communicat. Technology and Electronics 2015, 60, 12, 1341-1347.
- [9] Zhernovyi Yu., Kopytko B., Zhernovyi K. On characteristics of the Mθ/G/1/m and Mθ/G/1 queues with queue-size based packet dropping, Journal of Applied Mathematics and Computational Mechanics 2014, 13(4), 163-175.
- [10] Wentzel E.S., Ovcharov L.A., Theory of Stochastic Processes and its Engineering Applications, Vysshaya Shkola, Moscow 2000 (in Russian).
- [11] Zhernovyi Yu., Creating Models of Queueing Systems Using GPSS World, LAP Lambert Academic Publishing, Saarbrücken 2015.
- [12] Boyev V.D., Systems Modeling, Tools of GPSS World, BHV-Petersburg, St. Petersburg 2004 (in Russian).
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2b1da931-9c9d-4a5a-824f-9614b367d095