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Abstract. We propose a method for determining the probabilistic characteristics of the
M/G/1/m queueing system with the random dropping of arrivals and distribution of the
service time depending on the queue length. Two sets of service modes, with the service
time distribution functions F,(x) and El(x) respectively, are used according to the two-
threshold hysteretic strategy. The Laplace transforms for the distribution of the number
of customers in the system during the busy period and for the distribution function of the
length of the busy period are found. The developed algorithm for calculating the stationary
characteristics of the system is tested with the help of a simulation model constructed
with the assistance of GPSS World tools.
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1. Introduction

Studies show [1-3] that the random dropping of arrivals is a powerful tool
for parameter control of a queueing system. The dropping can not only regulate
the queue length, loss probability of customers, waiting time, and queue length
variance, but also regulate several of these parameters simultaneously.

In order to increase the system capacity, threshold strategies of the service
intensity (service time) change are used in queueing systems. In the general case,
the essence of this strategy is that the service time distribution depends on the
number of customers in the system at the beginning of each customer service [4].
With the help of the potentials method, we have developed an efficient algorithm
for computing the stationary distribution of the number of customers in the systems
with threshold functioning strategies [4-8].
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In this paper we consider the M/G/1/m queueing system with random dropping
of customers and distribution of the service time depending on the queue length.
Two sets of service modes (the main mode and overload mode), with the service

time distribution functions F),(x) and Fn (x) respectively, are used according to the
two-threshold hysteretic strategy. The overload mode with the functions £, (x)

starts functioning if at the beginning of service of a customer, the number of cus-
tomers in the system satisfies the condition n > h,. The return to the main mode

with the functions F,(x) carried out at the beginning of service of the customer,
for which n=#h,, where 1<h, <h, <m.

Each arriving customer can be accepted for service with a probability depending
on the queue length. We assign this probability according to the rule: if at the time
of the arrival of a customer »n customers are in the system, then the customer is
accepted for service with probability S, and leaves the system (is discarded) with
probability 1—- £, . Fix a threshold value # (1<h <m) and suppose that S, =1 for
1<n<h, and p, =B (0<fB<1) for h+1<n<m. In paper [9] we also studied
the queueing systems with random dropping of arrivals. In contrast to this article,
in [9] the probability S, does not change during the time interval from the begin-
ning to the completion of service of each customer.

2. Basic random walks

We consider the M/G/1/m system, where m is the maximum number of custom-
ers in the queue. Let A be a parameter of the exponential distribution of the time
intervals between moments of arrival of customers. Suppose that, if at the begin-
ning of service of a customer the number of customers in the system is equal to
ne{l,2,...,m+1}, then the service time of this customer is a random variable
with distribution function F,(x) (x>0) for the main mode and }7“” (x) (x=>0) for
the overload mode.

Denote by P, the conditional probability, provided that at the initial time the
number of customers in the queueing system is equal to n<{0,1,2,...,m+1}, and
by E (P) the conditional expectation (the conditional probability) if the system
starts to work at the time of arrival of the first customer. Let 77(x) be the number

of customers arriving in the system during the time interval [0; x). Let
0) R —sx ) m(ﬂx)i —(s+A)x .
JAOETA (s)=je dF, (x), f (s+/1)=J..—'e dF, (x), i=0,1,2,...;
0 o 1!

F9)= 70 = [eab, . 70+ 2= [CL e (), i=00.2....
0 0 1.
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Mn:Txan(x)m, Mﬁofxdfi(x)mo, F(x)=1-F,(x), F,(x)=1-F,(x).
0 0

For Res>0 and ne{l,2,...,h,} consider the sequences r,(s), q,(s) and
R, (s), defined by the relations:

[e]

7, (s)= f,,l(s) '!.e_”Pn{n(x) =i+1}dF, (x), ie{-1,0,1,....m—n—1};
OE I(S) je P, (7(x) 2 m—n+ 1jdF, (x)

- 1)
q,(s)= J.e” P, {n(x)=i\F, (x)dx, i€{0,1,2,....m—n};
0

1

Gyt ()= _([e‘”‘ P {n(x)>m—n+1}F (x)dx; R (s)= m

Similarly, for Res>0 and ne{h, +1,h +2,...,m} we set the sequences

ﬁ-m‘ (S)7 qm’ (S) and I’én (S) :

7, (5) =~Lwe-sxpn{n(x) =i+1}dF, (x), ie{-1,0,1,...m—n—1};
1 (9) %

B (9) zﬁzeﬂx P {7(x)2m—n+1}dE, (x); )

g, (s)= Te P (n(x)=i}E (x)dx, i€{0,1,2,...,m—n);
0

. T o = N 1
Goea(5) = j R )2 m ot B0 Ry(9) = o

Let 7 and T denote the exponentially distributed random variables with parame-
ter A and 1=Af respectively, and Z is a random variable distributed according
to the law of Pascal, that is, P{Z =k} = f*(1- )", k=1,2,.... Tt is known [10],
that ZT' =T, that is, as a result of a random decimation of the simplest flow we
obtain a simplest flow.
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Given the above, for A+1<n<m we find

P, in(x) = J}—”;?J e, 0<j<m—n
P, i)z m—n+1}=1- 5 P, in(x)= jt=1- -“mzn‘“)].
Jj=0 j=0
For 1<n<h we obtain
P in == o o< i<hom

J!
P, {n(x)=j}=P{(h—n+DT+(n—h+j-DT <x<(h—=n+DT +(n—h+j)T}=

= Gh—n+1,n—h+j—l (x) - Gh—n+l,n—h+j (.X'), h—n+1< j sm-— n;

P2 m-nt1}=1- 3 P in(x)= j} =

j=0
=P{(h-n+ DT +(m-WT <x}=G, ., (%)
Gn’r(x)zP{nT+r7~"<x}=
( 1) ﬂ, //ZV r—1

=1- (n 1)'(1” 1)'(/1 i)nw 1zcr 1(n+r 2 k)'(ﬂ. ﬂ,) %
n+r=2—k +k (A /1/ xk+j/1 | N /1
( z ( )/1(+Jlii+/“) AZ(;’C) ,1k+1 AZ( X) J,
- i=0 pary

1<r<m-nh;

n—1 k
G,o(x)=P{nT <x}=1 —e_ﬂxzw.
’ i k!

Taking into account the expressions for P, {n(x)=j} and equalities

['e]

O ey

k _ k k
e e =g (54 2) = [l (2 j fs + x)}

O N | s+4Y 7
'([Te( A) Fn(x)dX—gnk(S-f-l)—m[l ;( jf()( +/’L)J

by (1), (2) calculate the terms of the sequences 7,,(s), ¢,;(s), 7,;(s) and g, (s).
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For h+1<n<h, we find

) 7
ﬂnj_l(s)=—f" (S+/1), qnj(s)zgnj(s+/{), 0<j<m—n;
’ 1(s) )
B ) =1 )mznf(”(sw) G Hl(s)—lﬁ—}*”—ggw<s+z).

For 1<n<h,<h and 1<n<h<h, we obtain

f”(j) (S + /1)

Ty, j1 (s)= 1)

s 4ui(5)=8,,(s+A), 0<j<h-n;

1 K —SX
CARIO Rt Gl CARPTIRIC) e RPN ) LG
n 0

4y (s)= J.eisx (Gh—n+l,n—h+j—1 (x) - Gh—n+1,n—h+j (x))l?n (x)dx, h-n+1<j<m-—n;
0

o0

nm n( )2; *sxGh_n-*-l,m—h(x)an(x)a q”)m—”*'l(s):J.ei‘YXGh—n*'l,m—h(X)E(X)dx;
1 (8)y 0
( 1)”}]"27 r=1 )
(n-D!(r _1)v(/1 l)nwlz (n+r=2-k)!

[eG,,(0)dF, (x) = £,(s)-
0

n+r=2-k

x(i—ﬂ)k{ @ 1)f“w1§f@< L)+ sz(”(ﬁz)}

—~ ﬂ,kﬂﬂ
Jj=

1<Sr<m-nh;

e G, (X)dF,(x)= f,(s) - i F O+ ), 4)
k=0

Ot 8 O 8

— BEACH (-D)"A" A" ol 3
e %G, (X)F, (x)dx = : T - /1)"+HZC,1(n+r 2—k)!

5 n+r=2-k o (k+ DA Q)
x(z—z)’fL -y D=2 ’)l,fw)

Jj=0

k! & ~
(s +/1)+Wzgm~(s+/1)}
i=0

i=0

1<r<m-h;

76,0 F, (e =1 =L Z 2l +2).
0

k=



202 Y. Zhernovyi, B. Kopytko

Expressions for 7,,(s) and §,;(s) are similar with presented in (3) and (4) for
h+1<h+1<n or h+1<h +1<n, and for h +1<n<h respectively, if we
replace f,, £, g,,; and F, by fn 19, g,, and E,

Note that

=M. (5

lim £.(s)= lim f.(s)=1, lim ——=M, lim ———
s—>+0f”( ) s—>+0f”( ) 5—>+0 l_fn(S) " s540 l_fn(S) "

Introduce the notation:

z,=limzx(s), ¢q,=Ilimgqg,(s), R =lmR (s),
s—=>+0 s—>+0 s—=>+0
#.=lim#, (s), §,=limg,(s), R =limR (s).

s—>+0 s—>+0

s—=>+0

With the help of equalities (1)-(5) we can obtain expressions for the members
of the sequences 7., ¢,., R,, #,., G,; and R .

3. Distribution of the number of customers in the system during
the busy period

Let £(¢) be the number of customers in the system at time ¢ Denote by P,
(P ) the conditional probability, provided that at the initial time the number

of customers of the system is equal to » and the service begins with the service
time distributed according to the law F, (x) (Fn (x)).

Let z=inf{t >0: £(¢) =0} denote the length of the first busy period for the
considered queucing system, and for k€ {1,2,...,m+1}

v, (k) =P, (EO) =k, 7> 1}, 1<n<hy;
y?n(t,k)zPF’n{f(t)zk,r>t}, hy+1<n<m+l;
v, (t, k), 1<n<h,;

w,(t, k), hy+1<n<m+l;

@, (2, k)={
D, (s, k)= j e (t,k)dt, ® (s,k)= Jle”tlﬁn(t,k)dt, Re s> 0.
0 0

It is evident that ¢,(z,k) =0, v, (¢,k) =g, (¢,k). With the help of the formula

of total probability we obtain the equalities:
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0,(1) =3 [P, 0(X)= 130,02t~ xO)dE, ()
J=0 0

+ [P, ()2 m—n+ g, (t - x.K)dF, (x)+
0

+I{n<k<m+1\P {n(t)=k—-n}F,(t), 1<n<hy;
v, (k)= Z IPn () = j3,, ;1 (t = x.K)dE, (x) + (6)

Jj=0 0

t
+ [, 0(0) 2 m =+ 147, (= x o) dF, (x) +
0
+In<k<m+ D3P () =k—mE,(t), h+1<n<m;

oyt () = [, (= 5, K)dF, () + T = m + 11, 0)
0

Here 7{A} is the indicator of a random event A; it equals 1 or 0 depending on

whether or not the event 4 occurs.
Introduce the notation:

fon (k) =Iin<k<m+13q,, (), fo(s.k)=I{n<k<m+1}G,,,(s).

Taking into account the relations (1) and (2), from (6) we obtain the system of
equations for the functions @ (s,k) and (I)”(s,k):

m+1-n

D, (5,K)= £,(8) D 7, ;o ()P, (5.K) + [ (5.6), 1< <y (7
Jj=0

m+l-n

D, (s,k)=£,() D 7 ()P, (. J)+ [y (s,6), h+1<n<m;  (8)

Jj=0
D, 1 (5,k) = [y ()P, (5,6) + Itk =m +1}1_fm—+l(s)
N

with the boundary conditions

Dy (5,k)=0, D, (s.6)=D, (s,k). 9)
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For solving the systems of equations (7)-(9) we will use the functions R, (s)

and 73,”. (s), defined by the recurrence relations:

-

j-1
7?’nl (S) = Rn+1 (S)’ Rn,_/H (S) = Rn+1 (S) Rﬂ+1,j (S) - f;’l (S)Z ﬂ-n+l,l (S)walﬂ',_/fi (S)
i=0

0<n<h -1, I<j<m-n-1;

-

Lo ~
7?’nl (S) = Rnﬂ (S)’ Rn,_/H (S) = Rnﬂ (S) Rﬂ+1,j (S) - f;’l (S)Z ﬁ:nJrl,l (S)walﬂ',_/fi (S)
i=0

hy<n<m-1, 1<j<m-n-1.

(10)
Introduce the notation:

C,(5)= Ry () ZR sV Ty s (5 Cpy(5)=Ry, () =1;

B, ()= ZR ), ()Lzz ®) +Z7r 7, <s>}

A,(5)=TR, 0, (5) - ZR )y (5% Dy ()= Dy (5, K)=0;

D, (k) = hZR (s)(f(,,m .0~ /. (s)zﬂ (s)':Z:ﬁ,u (] (5 k)}

Reasoning as in the proof of Theorem 1 of [7], we obtain the following
statement.

Theorem 1. For all k€ {1,2,...,m+1} and Res >0 the equalities

1
Co(s)

@, (5. k) = ——(C,()Dy(5.6) +(C, (5)Dy (5) = Cy(5)D, (5)) @, (5. k) ) -
—D,(s,k), 1<n<hy;

D, (5, k)= A4,()P,, (5, 5) = D R, () fiiy (5. 5), hy+1<n<m—1;
i=1

D, (5, k)= 4,()D,, (5, k)= D R (8) frniny (8, 5)s +1<n<hy;

B, (5.K) = D1 (5.K) = Foo ()0, (5.K) + T{k = m 131wt ()
S
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are fulfilled, where

m—hy

Co<s)[Dhl<s, )= 22 Riyi () Jisyon (5 k)J—ch(s)Do(s,k)
@ (s,k)= -

Gy, ()Dy(5) = Co(s)( Dy, (5)+ 4, (5))

4. Busy period and stationary distribution

If the system starts functioning at the moment when the first customer arrives,
then

Te-” P{E(t) =k, v > t}dt =D, (s,k) =
0 (11)

15) (CUIDy (5.8) +(C(5)Dy (5) = Cy()Dy (9)) @, (5, K) ) = Dy (s, k).

0

To obtain a representation for J e "P{r >1t}dt we sum up equalities (11) for k
0
running from I to m+1. Given the definitions of f, (s,k), f,,(s,k), g,;(s) and

g, ;(s), itis not difficult to ascertain that
m+1 m+1 m+1—n 1 s
3 N I LO), <<y
k=1 k=n
m+l m+l m+1-n f (S)
2 S (8= 2 fony(s:K) = Z 3,0 =—2 hvisnsm
k=1 k=n

Introduce the notation:

hy—n 1— _ m-1 »
D)= ZR,“-(s)[ e O ILIBNE) 3 A o/ (S)J
-1 =yl

mhl

f1+,()
C(s){D (s)- ZRhll(s) ' J C,, (5)Dy(s)
O (s)=

Chl(s)Do<s>—co(s)(13hl(s)+Ahl(s))

Thus, (11) confirms the following statement.



206 Y. Zhernovyi, B. Kopytko

Theorem 2. The Laplace transform of the distribution function of the length of the
busy period is defined as

j e
0

(12)
(D) +(C5)By(5) - Co (5D, ()) @, (5)) - Dy ).
Co(s)

To find IP{r>t}dt=E(T) we need to pass to the limit in (12) as s — +0.
0

We use the sequences 7,;,, R,, 7, and R, , as well as sequences R,;, and R,

obtained by limit passages: R, = limo R,(s), R, = lim0 R,(s). For R, and R,

no

(10) implies the recurrence relations:

Rnl = Rn+l; n j+1 n+1( n+l,j Zﬂl’l+1 erHlH - l]’

0<n<h -1, I<j<m-n-1;

(13)
~ ~ - B
Rnl - R"+1; n1+1 n+l,j Z”n+1,iRn+1+i,j—i >
i=0
h<n<m-1, 1<j<m-n-1.
Note that Ty 1,1 = haﬂ = ha,l =1.
Using the relations (13) and taking into account the equalities
m-n m-n
Zﬂ'anI, 1Sn§h2; Zﬁnjzla h1+1SnSm;
j=1 =1
we can prove that
nmn Z ni n+1mn1=19 IS}’lShz,
- (14)
men
Rn,m—n - niﬁ.n-*—i,m—n—i 219 h1+1S}’lSm—1,

Il
—_

i

Given (5) and (14), using (12) we obtain the following statement.
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Theorem 3. The mean length of the busy period is determined in the form

m—hy
Mﬂz%—Q—RmﬁgP%—Zﬁ%ng} (15)
i=1
where
fazn = ot SR Rope =Ry,
D, = ani (Mn-%—i - Z Tnti, j-n-i szquw } R(hy,hy) = %
i=1 j=hy+1 u=1 Ty —hy +1

Introduce the notation: limP{&(¢) =k} =p,, k<{0,1,2,...,m+1}. Reasoning
[—0

as in the paper [4], from (11) we obtain formulas for the stationary distribution
of the number of customers in the system.

Theorem 4. The stationary distribution of the number of customers in the system
is given by

1
1+ AE(7)

=
Pr= /11?0(730;{%{0 + Z(ROiqi,k—i — Ry i )], I<k<hy;
i1

Do

k—h,

k
Pr=4p, [ZROiqi,k—i +R(hy,hy) Z (Rhlithﬂ',k—hl—i - Rh1i4h1+i,k—h1—i ) -
=1 =1

k-1
_27?’11'%41,1{—1_,), hy+1<k<hy; "

i=1

k=h,
P = lpo[Do (k)= D, (k)+R(hy ahz)( Z R, +ie-ny-i = D, (k)J}
i=1
hy +1<k<m,
Pua1 =

m—hy
= lpo[Do (m+1)=Dy(m+1)+ R(hl’hZ)( Z Roin, vimsr-n,—i = Dy, (m+ I)Ba

i=1

where

k-1

hy—n k=j ~
Dn (k) = ZRni (qn-%—i,k—n—i - I{hZ +2<k< m} Z ”n+i,j—n—i ZRjqu-*—u,k—j—u}‘
i=1 u=1

j:h2+1
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Using (15) we find the ratio of the mean number of customers served per unit
of time to the mean number of all arriving customers per unit time and obtain
the formula for the stationary service probability

i=1

m—hy
Psv=po[To—T1+R(hnhz)[ZR ,-—T;”B, (17)
where

hy—n m—1 m=j
T;L = ZRM 1- Z ﬂ-nﬂ',j—n—i ZRju .
i=1 u=l1

j:h2 +1

We find the stationary queue characteristics - the average queue length E(Q)
and average waiting time E(W) - by the formulas

E0)=Y kp,.. E(W)=%9). (18)
=1

sV

5. Example for calculating of stationary characteristics

Assume that m=6, 1=10, h, =2, h,=h=4, /;’ =0.4, the uniform distribution
on the intervals (0;0.5] and (0;0.25] corresponds to the distribution functions of
the service time F,(x)=F(x) (1<n<h,) and F,(x)=F(x) (b +1<n<m+1)

respectively. Thus,
- 2 . 4
M, =M =025 M,=M=0.125, f(y) =—(1—e-°-5y), F() =—(1—e-°-25y).
y Yy

1

The row "p, " of Table I contains steady-state probabilities p,, calculated by

the formulas (16). For the sake of comparison, the same table contains the corre-
sponding probabilities evaluated by the GPSS World simulation system [11, 12]
for the time value ¢=10° The values of the stationary characteristics found by
the formulas (15), (17) and (18), and calculated with the help of GPSS World,
are shown in Table 2.



The potentials method for the M/G/1/m queue with customer dropping and hysteretic strategy ... 209

Table 1

Stationary distribution of the number of customers in the system

Number

of customers & 0 ! 2 3 4 > 6 7

Py 0.00373 | 0.01504 | 0.05757 | 0.13005 | 0.24539 | 0.33756 | 0.15697 | 0.05369

Pi
(GPSS World) 0.00371 | 0.01506 | 0.05768 | 0.13005 | 0.24527 | 0.33713 | 0.15693 | 0.05418

Table 2

Stationary characteristics of the system

Characteristic E(?) E(Q) E(W) P

sV

Analytical value 26.724 3.511 0.541 0.650
Value according to GPSS World 26.894 3.512 0.541 0.649

Calculations show that if the random dropping of customers is not used, then
for the considered data the value of the capacity of the system P_, is increased by

13.1%, but E(Q) and E(W) are also increased by 25.6% and 11.1% respectively.

6. Conclusions

With the help of the potentials method, we have obtained simple and suitable
formulas for numerical realization for finding the stationary characteristics of the
M/G/1/m queueing system with the random dropping of customers and hysteretic
change of the service time. We have examined a fairly general statement of the
problem, because we assume that the service time depends on the number of cus-
tomers in the system and the dropping probability is a function of the queue length
at the time of arrival of a customer.

Our approach, unlike most of the methods used to study the semi-Markov
models of queueing, allows to investigate not only stationary, but also the transient
regime of the system, in particular, to find the Laplace transforms for the distribu-
tion of the number of customers in the system during the busy period and for
the distribution function of the length of the busy period.
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