PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A random maintenance last model with preventive maintenance for the product under a random warranty

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Although renewing pro-rate replacement warranty (RPRW) can help producers obtain some compensation from users, there seldom exists a two-dimensional random RPRW with a refund (2D-RRPRW with R) where a refund can guarantee the fairness of users. In addition, although random periodic replacement last (RPRL) can extend the service span after the expiry of the warranty, RPRL considering preventive maintenance (PM) has been seldom modeled to further lengthen the service span after the expiry of the warranty. In view of these, a 2D-RRPRW with R is devised to guarantee the fairness of users by integrating the limited job cycles and a refund into RPRW. Under the case where 2D-RRPRW with R warrants products with job cycles, a RPRL with PM is modeled to further lengthen the service span after the expiry of the warranty and reduce the failure frequency. It shows that to shorten the warranty period can makes the warranty cost of 2D-RRPRW with R to be less than the warranty cost of classic RPRW; and the performance of RPRL with PM outperforms the performance of classic RPRL.
Słowa kluczowe
Rocznik
Strony
544--553
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
  • Foshan University, School of Quality Management and Standardization, Foshan 528225, China
autor
  • Foshan University, School of Quality Management and Standardization, Foshan 528225, China
autor
  • Beijing Institute of Technology, School of Management & Economics, Beijing 100081, China
autor
  • Lanzhou University of Technology, School of Economics and Management, Lanzhou 730050, China
Bibliografia
  • 1. Barlow RE, Proschan F. Mathematical theory of reliability. John Wiley & Sons, Hoboken 1965, http://10.1214/aoms/1177699826.
  • 2. Cha JH, Finkelstein M, Levitin G. Optimal warranty policy with inspection for heterogeneous, stochastically degrading items. European Journal of Operational Research 2021; 289(3): 1142–1152, https://doi.org/10.1016/j.ejor.2020.07.045.
  • 3. Hooti F, Ahmadi J, Longobardi M. Optimal extended warranty length with limited number of repairs in the warranty period. Reliability Engineering & System Safety 2020; 203: 107111, https://doi.org/10.1016/j.ress.2020.107111.
  • 4. Hashemi, M, Asadi M, Tavangar M. Optimal maintenance strategies for coherent systems: A warranty dependent approach. Reliability Engineering & System Safety 2022; 217: 108027, https://doi.org/10.1016/j.ress.2021.108027.
  • 5. He Z, Wang D, He S, Zhang Y, Dai A. Two-dimensional extended warranty strategy including maintenance level and purchase time: A winwin perspective. Computers & Industrial Engineering 2020; 141: 106294, https://doi.org/10.1016/j.cie.2020.106294.
  • 6. Jung KM, Park M, Park DH. Cost optimization model following extended renewing two-phase warranty. Computers & Industrial Engineering 2015; 79: 188–194, https://doi.org/10.1016/j.cie.2014.10.016.
  • 7. Luo M, Wu S. A comprehensive analysis of warranty claims and optimal policies. European Journal of Operational Research 2019; 276: 144–159, https://doi.org/10.1016/j.ejor.2018.12.034.
  • 8. Liu B, Wu J, Xie M. Cost analysis for multi-component system with failure interaction under renewing free-replacement warranty. European Journal of Operational Research 2015; 243(3): 874–882, https://doi.org/10.1016/j.ejor.2015.01.030.
  • 9. Li T, He S, Zhao X. Optimal warranty policy design for deteriorating products with random failure threshold. Reliability Engineering & System Safety, 2022; 218: 108142, https://doi.org/10.1016/j.ress.2021.108142.
  • 10. Liu P, Wang G, Su P. Optimal replacement strategies for warranty products with multiple failure modes after warranty expiry. Computers & Industrial Engineering 2021; 153: 107040, https://doi.org/10.1016/j.cie.2020.107040.
  • 11. Lin D, Jin B, Chang D. A PSO approach for the integrated maintenance model. Reliability Engineering & System Safety, 2020; 193: 106625, https://doi.org/10.1016/j.ress.2019.106625.
  • 12. Liu P, Wang G, Su P. Optimal maintenance strategies for warranty products with limited repair time and limited repair number. Reliability Engineering & System Safety, 2021; 210: 107554, https://doi.org/10.1016/j.ress.2021.107554.
  • 13. Nakagawa T. Random maintenance policies. Springer, London 2014, https://10.1007/978-1-4471-6575-0.
  • 14. Park M, Jung KM, Park DH. Warranty cost analysis for second-hand products under a two-stage repair-or-full refund policy. Reliability Engineering & System Safety 2020; 193: 106596, https://doi.org/10.1016/j.ress.2019.106596.
  • 15. Qiao P, Shen J, Zhang F, Ma Y. Optimal warranty policy for repairable products with a three-dimensional renewable combination warranty. Computers & Industrial Engineering 2022; 168: 108056, https://doi.org/10.1016/j.cie.2022.108056.
  • 16. Qiu Q, Cui L. Gamma process based optimal mission abort policy. Reliability Engineering & System Safety, 2019; 190: 106496, https://doi.org/10.1016/j.ress.2019.106496.
  • 17. Shang L, Si S, Sun S, Jin T. Optimal warranty design and post-warranty maintenance for products subject to stochastic degradation. IISE Transactions 2018; 50(10): 913–927, https://doi.org/10.1080/24725854.2018.1448490.
  • 18. Shafiee M, Chukova S. Maintenance models in warranty: A literature review. European Journal of Operational Research, 2013; 229(3):561–572, https://doi.org/10.1016/j.ejor.2013.01.017.
  • 19. Shang L, Si S, Cai Z. Optimal maintenance–replacement policy of products with competing failures after expiry of the warranty. Computers & Industrial Engineering 2016; 98: 68–77, https://doi.org/10.1016/j.cie.2016.05.012.
  • 20. Sheu SH, Tsai HN, Sheu UY, Zhang ZG. Optimal replacement policies for a system based on a one-cycle criterion. Reliability Engineering & System Safety 2019; 191: 106527, https://doi.org/10.1016/j.ress.2019.106527.
  • 21. Shang L, Qiu Q, Wang X. Random periodic replacement models after the expiry of 2D-warranty. Computers & Industrial Engineering 2022; 164: 107885, https://doi.org/10.1016/j.cie.2021.107885.
  • 22. Salem M B, Fouladirad M, Deloux E. Variance Gamma process as degradation model for prognosis and imperfect maintenance of centrifugal pumps. Reliability Engineering & System Safety, 2022; 223: 108417, https://doi.org/10.1016/j.ress.2022.108417.
  • 23. Syamsundar A, Naikan V N A, Wu S. Extended arithmetic reduction of age models for the failure process of a repairable system. Reliability Engineering & System Safety, 2021; 215: 107875, https://doi.org/10.1016/j.ress.2021.107875.
  • 24. Shang L, Wang H, Wu C, Cai Z. The post-warranty random maintenance policies for the product with random working cycles. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2021; 23 (4): 726–735, http://doi.org/10.17531/ein.2021.4.15.
  • 25. Wang L, Pei Z, Zhu H, Liu B. Optimising extended warranty policies following the two-dimensional warranty with repair time threshold. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2018; 20(4): 523–530, http://dx.doi.org/10.17531/ein.2018.4.3.
  • 26. Wang X, Xie W, Ye ZS, Tang L. Aggregate discounted warranty cost forecasting considering the failed-but-not-reported events. Reliability Engineering & System Safety, 2017; 168: 355-364, https://doi.org/10.1016/j.ress.2017.04.009.
  • 27. Wang X, Liu B, Zhao X. A performance-based warranty for products subject to competing hard and soft failures. International Journal of Production Economics 2021; 233: 107974, https://doi.org/10.1016/j.ijpe.2020.107974.
  • 28. Wang X, He K, He Z, Li L, Xie M. Cost analysis of a piece-wise renewing free replacement warranty policy. Computers & Industrial Engineering 2019; 135: 1047–1062, https://doi.org/10.1016/j.cie.2019.07.015.
  • 29. Xie W, Shen L, Zhong Y. Two-dimensional aggregate warranty demand forecasting under sales uncertainty. IISE Transactions 2017; 49(5): 553–565, https://doi.org/10.1080/24725854.2016.1263769.
  • 30. Ye Z S, Xie M. Stochastic modelling and analysis of degradation for highly reliable products. Applied Stochastic Models in Business and Industry, 2015; 31(1): 16–32, https://doi.org/10.1002/asmb.2063.
  • 31. Ye Z S, Murthy D N P. Warranty menu design for a two-dimensional warranty. Reliability Engineering & System Safety 2016; 155: 21–29, https://doi.org/10.1016/j.ress.2016.05.013.
  • 32. Yang L, Chen Y, Qiu Q, Wang J. Risk Control of Mission-Critical Systems: Abort Decision-Makings Integrating Health and Age Conditions. IEEE Transactions on Industrial Informatics, 2022; https://doi.org/ 10.1109/TII.2022.3141416.
  • 33. Zhao X, Nakagawa T. Optimization problems of replacement first or last in reliability theory. European Journal of Operational Research 2012; 223(1): 141–149, https://doi.org/10.1016/j.ejor.2012.05.035.
  • 34. Zhao X, Nakagawa T, Zuo M. Optimal replacement last with continuous and discrete policies. IEEE Transactions on Reliability 2014; 63 : 868–880, http://dx.doi.org/10.1109/TR.2014.2337811.
  • 35. Zhao X, Sun J, Qiu Q, Chen K. Optimal inspection and mission abort policies for systems subject to degradation. European Journal of Operational Research, 2021; 292(2): 610–621, https://doi.org/10.1016/j.ejor.2020.11.015.
  • 36. Zhao X, Fan Y, Qiu Q, Chen K. Multi-criteria mission abort policy for systems subject to two-stage degradation process. European Journal of Operational Research, 2021; 295(1): 233–245, https://doi.org/10.1016/j.ejor.2021.02.043.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2b1caf38-a907-4100-ab34-b5f0f21da21e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.