PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Potential contribution of nanotechnology to the circular economy of plastic materials

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The problem of plastic accumulation in the environment requires the development of effective strategies to shift the paradigm of used plastics from wastes to resources. In the present contribution, after an overview of the current plastic management strategies, the possible role of nanotechnology to this emerging field is considered. In particular, the challenges related to the use of nano-additives to improve the properties of recycled plastics is discussed based on the fundamental aspects of colloid stabilisation. Finally, the contribution of nanotechnology to the fabrication of effective catalysts for the depolymerisation of plastics into the constituent monomers is outlined.
Twórcy
  • Institute of Particle Technology, Friedrich-Alexander-Universitat Erlangen-Nűrnberg (FAU) Cauerstraβe4, D-91058 Erlangen
  • Interdisciplinary Center for Functional Particle Systems, Friedrich-Alexander-Universität Erlangen-Nűrnberg (FAU), Haberstraβe 9a, D-91058 Erlangen
Bibliografia
  • [1] https://www.nationalgeographic.com/news/2018/03/great-pacific-garbage-patch-plastics-environment/, National geographic.
  • [2] Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Science Advances 3 (2017), e1700782.
  • [3] Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, Narayan R, Law KL. Marine pollution. Plastic waste inputs from land into the ocean. Science (New York, N.Y.) 347 (2015), 768-771.
  • [4] European Community, https://ec.europa.eu/environment/circular-economy/pdf/plastics-strategybrochure.pdf.
  • [5] World Economic Forum, Ellen MacArthur Foundation and McKinsey & Company, The New Plastics Economy — Rethinking the future of plastics (2016, http://www.ellenmacarthurfoundation.org/publications).
  • [6] DG CLIMA - DG Climate Action, COM(2015)81/F1 - EN.
  • [7] DG SG - Secretariat-General, COM(2016)110/F1 - EN.
  • [8] Schyns ZOG, Shaver MP. Mechanical Recycling of Packaging Plastics: A Review. Macromolecular Rapid Communications (2020), e2000415.
  • [9] European Community, https://ec.europa.eu/growth/sectors/raw-materials/specific-interest/critical_en.
  • [10] Groh KJ, Backhaus T, Carney-Almroth B, Geueke B, Inostroza PA, Lennquist A, Leslie HA.,Maffini M, Slunge D, Trasande L, Warhurst AM, Muncke J. Overview of known plastic packaging-associated chemicals and their hazards. The Science of the Total Environment 651 (2019), 3253-3268.
  • [11] Garcia JM, Robertson ML, The future of plastics recycling. Science (New York, N.Y.) 358 (2017), 870-872.
  • [12] Zhu J-B, Watson EM, Tang J, Chen EYX. A synthetic polymer system with repeatable chemical recyclability. Science (New York, N.Y.) 360 (2018), 398-403.
  • [13] Hong M, Chen EYX. Chemically recyclable polymers: a circular economy approach to sustainability. Green Chemistry 19 (2017), 3692-3706.
  • [14] Sheldon RA, Norton M. Green chemistry and the plastic pollution challenge: towards a circular economy. Green Chemistry 22 (2020), 6310-6322.
  • [15] Israelachvili JN. Intermolecular and Surface Forces, 3rd ed., Elsevier Science, Saint Louis, 2015.
  • [16] Parsons DF, Bostrom M, Lo Nostro P, Ninham BW. Hofmeister effects: interplay of hydration, nonelectrostatic potentials, and ion size. PCCP 13 (2011), 12352-12367.
  • [17] Sperling RA, Parak WJ, Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philosophical Transactions. Series A, Mathematical, Physical and Engineering Sciences 368 (2010), 1333-1383.
  • [18] Nag A, Kovalenko MV, Lee JS, Liu W, Spokoyny B, Talapin DV. Metal-free inorganic ligands for colloidal nanocrystals: S2-, HS-, Se2-, HSe-, Te2-, HTe-, TeS3(2-), OH-, and NH2- as surface ligands. Journal of the American Chemical Society 133 (2011), 10612-10620.
  • [19] Nel A, Xia T, Meng H, Wang X, Lin S, Ji Z, Zhang H. Nanomaterial toxicity testing in the 21st century: use of a predictive toxicological approach and high-throughput screening. Accounts of Chemical Research 46 (2013), 607-621.
  • [20] Heiz U. (Ed.), Nanocatalysis: With 14 tables, 2nd ed., Springer, Berlin, 2008.
  • [21] Hayden BE. Particle size and support effects in electrocatalysis. Accounts of Chemical Research 46 (2013), 1858-1866.
  • [22] Rodriguez JA, Liu P, Hrbek J, Evans J, Perez M. Water gas shift reaction on Cu and Au nanoparticles supported on CeO2(111) and ZnO(0001): intrinsic activity and importance of support interactions. Angewandte Chemie (International ed. in English) 46 (2007), 1329-1332.
  • [23] Lopez de Dicastillo C, Velasquez E, Rojas A, Guarda A, Galotto MJ. The use of nanoadditives within recycled polymers for food packaging: Properties, recyclability, and safety. Comprehensive Reviews in Food Science and Food Safety 19 (2020), 1760-1776.
  • [24] Jagadeesan D, Eswaramoorthy M, Functionalized carbon nanomaterials derived from carbohydrates. Chemistry, an Asian Journal 5 (2010), 232-243.
  • [25] Gu D, Ma R, Zhou Y, Wang F, Yan K, Liu Q, Wang J. Synthesis of Nitrogen-Doped Porous Carbon Spheres with Improved Porosity toward the Electrocatalytic Oxygen Reduction. ACS Sustainable Chemical Engineering 5 (2017), 11105-11116.
  • [26] Mallakpour S, Javadpour M. The potential use of recycled PET bottle in nanocomposites manufacturing with modified ZnO nanoparticles capped with citric acid: preparation, thermal, and morphological characterization. RSC Advances 6 (2016), 15039-15047.
  • [27] Herrera-Sandoval GM, Baez-Angarita DB, Correa-Torres SN, Primera-Pedrozo OM, Hernandez-Rivera SP. Novel EPS/TiO2 Nanocomposite Prepared from Recycled Polystyrene. Material Science and Applications 4 (2013), 179-185.
  • [28] Hadi NJ, Mohamed DJ. Study the Relation between Flow, Thermal and Mechanical Properties of Waste Polypropylene Filled Silica Nanoparticles. Key Engineering Materials 724 (2016), 28-38.
  • [29] Velasquez E, Garrido L, Valenzuela X, Galotto MJ, Guarda A, Lopez de Dicastillo C. Physical properties and safety of 100% post-consumer PET bottle -organoclay nanocomposites towards a circular economy. Sustainable Chemistry and Pharmacy, 17 (2020) 100285.
  • [30] Farshchi N, Ostad YK. Sepiolite as a nanofiller to improve mechanical and thermal behavior of recycled highdensity polyethylene. Progress in Rubber, Plastics and Recycling Technology 36 (2020), 185-195.
  • [31] Rossi LM, Costa NJS, Silva FP, Wojcieszak R. Magnetic nanomaterials in catalysis: advanced catalysts for magnetic separation and beyond. Green Chemistry 16 (2014), 2906-2933.
  • [32] Brooks AM, Wang S, Jambeck JR. The chinese import ban and its impact on global plastic waste trade. Science Advances 4 (2018), eaat0131.
  • [33] Bakker CA, Wever R, Teoh C, de Clercq S. Designing cradle-to-cradle products: a reality check. International Journal of Sustainable Engineering 3 (2010), 2-8.
  • [34] Skene KR. Circles, spirals, pyramids and cubes: why the circular economy cannot work. Sustainability Science 13 (2018), 479-492.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2b1b9662-6c5b-48e7-a2e1-b29c1f2f98c2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.