PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nonlinear free vibration and transient responses of porous functionally graded magneto-electro-elastic plates

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The geometrically nonlinear free vibration and transient response of porous functionally graded magneto-electro-elastic (PFG-MEE) plates are studied based on the first-order shear deformation (FSDT) theory, von Karman's nonlinear strain–displacement relations along with modified power law. With Hamilton's theory, the coupled equations of motion are obtained and analyzed by adapting finite element methods (FEM). Moreover, using Newmark's, Picard's, and Newton–Raphson methods, a porous FG-MEE plate's nonlinear and transient response is analyzed using MATLAB software. After validating the present study, the influence of porosity distribution, porosity index, boundary conditions, aspect ratios, and thickness to length ratios on the nonlinear frequency ratio and nonlinear transient response of porous FG-MEE plate is investigated. It is revealed that geometric parameters, porosity index, boundary conditions, and form of porosity distribution significantly influence the nonlinear frequency ratio and nonlinear transient deflections of porous FG-MEE plates.
Rocznik
Strony
art. no. e38, 2022
Opis fizyczny
Bibliogr. 53 poz., rys., wykr.
Twórcy
autor
  • Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal 575025, India
  • Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal 575025, India
autor
  • Department of Mechanical Engineering, National Institute of Technology, Silchar 788010, India
Bibliografia
  • 1. Kim J, Żur KK, Reddy JNN. Bending, free vibration, and buckling of modified couples stress-based functionally graded porous micro-plates. Compos Struct. 2019;209(November 2018):879–88. https://doi.org/10.1016/j.compstruct.2018.11.023.
  • 2. Khorasani M, et al. Magneto-electro-elastic vibration analysis of modified couple stress-based three-layered micro rectangular plates exposed to multi-physical fields considering the flexoelec-tricity effects. Smart Struct Syst. 2020. https://doi.org/10.12989/SSS.2020.26.3.331.
  • 3. Hadjiloizi DA, Kalamkarov AL, Georgiades AV. Micromechanical analysis of piezo-magneto-thermo-elastic T-ribbed and Π-ribbed plates. Mech Adv Mater Struct. 2018;25(8):657–68. https://doi.org/10.1080/15376494.2017.1308602.
  • 4. Vinyas M, Harursampath D, Thoi TN. A higher order coupled frequency characteristics study of smart magneto-electro-elastic composite plates with cut-outs using finite element methods. Def Technol. 2020. https://doi.org/10.1016/j.dt.2020.02.009.
  • 5. Bhangale RK, Ganesan N. Free vibration of simply supported functionally graded and layered magneto-electro-elastic plates by finite element method. J Sound Vib. 2006;294(4):1016–38. https://doi.org/10.1016/j.jsv.2005.12.030.
  • 6. Bhangale RK, Ganesan N. Static analysis of simply supported functionally graded and layered magneto-electro-elastic plates. Int J Solids Struct. 2006;43(10):3230–53. https://doi.org/10.1016/j.ijsolstr.2005.05.030.
  • 7. Pan E. Exact solution for simply supported and multilayered magneto-electro-elastic plates. J Appl Mech. 2001;68(4):608–18. https://doi.org/10.1115/1.1380385.
  • 8. Pan E, Han F. Exact solution for functionally graded and layered magneto-electro-elastic plates. Int J Eng Sci. 2005;43(3–4):321–39. https://doi.org/10.1016/j.ijengsci.2004.09.006.
  • 9. Pan E, Heyliger PRR. Free vibrations of simply supported and multilayered magneto-electro-elastic plates. J Sound Vib. 2002;252(3):429–42. https://doi.org/10.1006/jsvi.2001.3693.
  • 10. Alieldin SS, Alshorbagy AE, Shaat M. A first-order shear deformation finite element model for elastostatic analysis of laminated composite plates and the equivalent functionally graded plates. Ain Shams Eng J. 2011;2(1):53–62. https://doi.org/10.1016/j.asej.2011.05.003.
  • 11. Alaimo A, Benedetti I, Milazzo A. A finite element formulation for large deflection of multilayered magneto-electro-elastic plates. Compos Struct. 2014;107:643–53. https:// doi. org/ 10. 1016/j.compstruct.2013.08.032.
  • 12. Kattimani SC, Ray MC. Active control of large amplitude vibrations of smart magneto–electro–elastic doubly curved shells. Int J Mech Mater Des. 2014;10(4):351–78. https://doi.org/10.1007/s10999-014-9252-3.
  • 13. Wang J, Qu L, Qian F. State vector approach of free-vibration analysis of magneto-electro-elastic hybrid laminated plates. Compos Struct. 2010;92(6):1318–24. https://doi.org/10.1016/j.comps truct.2009.11.013.
  • 14. Ghabussi A, Habibi M, NoormohammadiArani O, Shavalipour A, Moayedi H, Safarpour H. Frequency characteristics of a viscoelastic graphene nanoplatelet–reinforced composite circular microplate. JVC/J Vib Control. 2020. https:// doi. org/ 10. 1177/1077546320923930.
  • 15. Shariati A, et al. Extremely large oscillation and nonlinear frequency of a multi-scale hybrid disk resting on nonlinear elastic foundation. Thin-Walled Struct. 2020;154(May):106840. https://doi.org/10.1016/j.tws.2020.106840.
  • 16. Jermsittiparsert K, et al. Critical voltage, thermal buckling and frequency characteristics of a thermally affected GPL reinforcedcomposite microdisk covered with piezoelectric actuator. Mech Based Des Struct Mach. 2020. https://doi.org/10.1080/15397734.2020.1748052.
  • 17. Al-Furjan MSH, Habibi M, won Jung D, Chen G, Safarpour M, Safarpour H. Chaotic responses and nonlinear dynamics of the graphene nanoplatelets reinforced doubly-curved panel. Eur J Mech A/Solids. 2021;85(May 2020):104091. https://doi.org/10.1016/j.euromechsol.2020.104091.
  • 18. Kiran MCC, Kattimani SCC, Vinyas M. Porosity influence on structural behaviour of skew functionally graded magneto-electro-elastic plate. Compos Struct. 2018;191(November 2017):36–77. https://doi.org/10.1016/j.compstruct.2018.02.023.
  • 19. Ebrahimi F, Jafari A, Barati MR. free vibration analysis of smart porous plates subjected to various physical fields considering neutral surface position. Arab J Sci Eng. 2017;42(5):1865–81. https://doi.org/10.1007/s13369-016-2348-3.
  • 20. Vinyas M. On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electromagnetic conditions using HSDT. Compos Struct. 2020;240(December 2019):112044. https:// doi. org/ 10. 1016/j.compstruct.2020.112044.
  • 21. Xie K, Wang Y, Niu H, Chen H. Large-amplitude nonlinear free vibrations of functionally graded plates with porous imperfection: a novel approach based on energy balance method. Compos Struct. 2020;246: 112367. https://doi.org/10.1016/j.compstruct.2020.112367.
  • 22. Wattanasakulpong N, Ungbhakorn V. Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities. Aerosp Sci Technol. 2014;32(1):111–20. https://doi.org/10.1016/j.ast.2013.12.002.
  • 23. Wang YQ, Zu JW. Porosity-dependent nonlinear forced vibration analysis of functionally graded piezoelectric smart material plates.Smart Mater Struct. 2017. https://doi.org/10.1088/1361-665X/aa8429.
  • 24. Cong PH, Chien TM, Khoa ND, Duc ND. Nonlinear thermomechanical buckling and post-buckling response of porous FGM plates using Reddy’s HSDT. Aerosp Sci Technol. 2018;77:419–28. https://doi.org/10.1016/j.ast.2018.03.020.
  • 25. Liu Y, Su S, Huang H, Liang Y. Thermal-mechanical coupling buckling analysis of porous functionally graded sandwich beams based on physical neutral plane. Compos Part B Eng. 2019;168(August 2018):236–42. https://doi.org/10.1016/j.compositesb.2018.12.063.
  • 26. Yang J, Chen D, Kitipornchai S. Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method. Compos Struct. 2018;193(February):281–94. https:// doi. org/ 10. 1016/j. compstruct.2018.03.090.
  • 27. Ebrahimi F, Mokhtari M. Transverse vibration analysis of rotating porous beam with functionally graded microstructure using the differential transform method. J Brazilian Soc Mech Sci Eng. 2015;37(4):1435–44. https://doi.org/10.1007/s40430-014-0255-7.
  • 28. Ebrahimi F, Zia M. Large amplitude nonlinear vibration analysis of functionally graded Timoshenko beams with porosities. Acta Astronaut. 2015;116:117–25. https://doi.org/10.1016/j.actaastro.2015.06.014.
  • 29. Shafiei N, Mousavi A, Ghadiri M. On size-dependent nonlinear vibration of porous and imperfect functionally graded tapered microbeams. Int J Eng Sci. 2016;106:42–56. https://doi.org/10.1016/j.ijengsci.2016.05.007.
  • 30. Ebrahimi F, Ghasemi F, Salari E. Investigating thermal effects on vibration behavior of temperature-dependent compositionally graded Euler beams with porosities. Meccanica. 2016;51(1):223–49. https://doi.org/10.1007/s11012-015-0208-y.
  • 31. Nguyen DD, Tran QQ, Nguyen DK. New approach to investigate nonlinear dynamic response and vibration of imperfect functionally graded carbon nanotube reinforced composite double curved shallow shells subjected to blast load and temperature. Aerosp Sci Technol. 2017. https://doi.org/10.1016/j.ast.2017.09.031.
  • 32. Singh VK, Mahapatra TR, Panda SK. Nonlinear transient analysis of smart laminated composite plate integrated with PVDF sensor and AFC actuator. Compos Struct. 2016;157:121–30. https://doi.org/10.1016/j.compstruct.2016.08.020.
  • 33. Phung-Van P, Ferreira AJM, Nguyen-Xuan H, Abdel Wahab M. An isogeometric approach for size-dependent geometrically nonlinear transient analysis of functionally graded nanoplates. Compos Part B Eng. 2017;118:125–34. https://doi.org/10.1016/j.compositesb.2017.03.012.
  • 34. Phung-Van P, Lieu QX, Nguyen-Xuan H, Abdel Wahab M. Size-dependent isogeometric analysis of functionally graded carbon nanotube-reinforced composite nanoplates. Compos Struct. 2017;166:120–35. https://doi.org/10.1016/j.compstruct.2017.01.049.
  • 35. Phung-Van P, Le Thanh C, Nguyen-Xuan H, Abdel-Wahab M. Nonlinear transient isogeometric analysis of FG-CNTRC nanoplates in thermal environments. Compos Struct. 2018;201(June):882–92. https:// doi. org/ 10. 1016/j. compstruct.2018.06.087.
  • 36. Al-Furjan MSH, Habibi M, Ni J, won Jung D, Tounsi A. Frequency simulation of viscoelastic multi-phase reinforced fully symmetric systems. Eng Comput. 2020. https://doi.org/10.1007/s00366-020-01200-x.
  • 37. Safarpour M, Ebrahimi F, Habibi M, Safarpour H. On the nonlinear dynamics of a multi-scale hybrid nanocomposite disk. Eng Comput. 2020. https://doi.org/10.1007/s00366-020-00949-5.
  • 38. Al-Furjan MSH, Habibi M, Chen G, Safarpour H, Safarpour M, Tounsi A. Chaotic oscillation of a multi-scale hybrid nano-composites reinforced disk under harmonic excitation via GDQM. Compos Struct. 2020;252(May):112737. https://doi.org/10.1016/j.compstruct.2020.112737.
  • 39. Zhu J, Lai Z, Yin Z, Jeon J, Lee S. Fabrication of ZrO2-NiCr functionally graded material by powder metallurgy. Mater Chem Phys. 2001;68(1–3):130–5. https:// doi. org/ 10. 1016/ S0254- 0584(00)00355-2.
  • 40. Kumar RS, Ray MC. Active constrained layer damping of geometrically nonlinear vibrations of smart laminated composite sandwich plates using 1–3 piezoelectric composites. Int J Mech Mater Des. 2012;8(4):359–80. https:// doi. org/ 10. 1007/s10999-012-9201-y.
  • 41. Razavi S, Shooshtari A. Nonlinear free vibration of magneto-electro-elastic rectangular plates. Compos Struct. 2014;119:377–84.https://doi.org/10.1016/j.compstruct.2014.08.034.
  • 42. Kattimani SC. Geometrically nonlinear vibration analysis of multiferroic composite plates and shells. Compos Struct. 2017;163:185–94. https://doi.org/10.1016/j.compstruct.2016.12.021.
  • 43. Mahesh V, Harursampath D. Nonlinear vibration of functionally graded magneto-electro-elastic higher order plates reinforced by CNTs using FEM. Eng Comput. 2020. https://doi.org/10.1007/s00366-020-01098-5.
  • 44. Kiran MC, Kattimani SC. Assessment of porosity influence on vibration and static behaviour of functionally graded magneto-electro-elastic plate: a finite element study. Eur J Mech A/Solids. 2018;71(January):258–77. https://doi.org/10.1016/j.euromechsol.2018.04.006.
  • 45. Milazzo A. Large deflection of magneto-electro-elastic laminated plates. Appl Math Model. 2014;38(5–6):1737–52. https://doi.org/10.1016/j.apm.2013.08.034.
  • 46. Mahesh V, Sagar PJ, Kattimani S. Influence of coupled fields on free vibration and static behavior of functionally graded magneto-electro-thermo-elastic plate. J Intell Mater Syst Struct. 2018;29(7):1430–55. https:// doi. org/ 10. 1177/ 10453 89X17740739.
  • 47. Han W, Petytf M. Geometrically nonlinear vibration analysis of thin, rectangular plates using the hierarchical finite element method—I: the fundamental mode of isotropic plates. Compos Struct. 1997;63(2):295–308.
  • 48. Bergan PG, Clough RW. Convergence criteria for iterative processes. AIAA J. 1972;10(8):1107–8.
  • 49. Shabanpour S, Razavi S, Shooshtari A. Nonlinear vibration analysis of laminated magneto-electro-elastic rectangular plate based on third-order shear deformation theory. Iran J Sci Technol Trans Mech Eng. 2019;43(S1):211–23. https://doi.org/10.1007/s40997-018-0150-4.
  • 50. Bathe KJ. Finite element procedures. 2nd ed. Klaus-Jurgen Bathe; 2006.
  • 51. Simões Moita JM, Motasoares CACM, Motasoares CACM. Analyses of magneto-electro-elastic plates using a higher order finite element model. Compos Struct. 2009;91(4):421–6. https://doi.org/10.1016/j.compstruct.2009.04.007.
  • 52. Shooshtari A, Razavi S. Linear and nonlinear free vibration of a multilayered magneto-electro-elastic doubly-curved shell on elastic foundation. Compos Part B Eng. 2015;78:95–108. https://doi.org/10.1016/j.compositesb.2015.03.070.
  • 53. Chen SWCJ, Dawe DJ. Nonlinear transient analysis of moderately thick rectangular composite plates. Aeronaut J. 2000;114(1157):437–44. https:// doi. org/ 10. 1017/ s0001 924000003912.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2b1ad052-fc6c-485f-bb63-95e4b4b28178
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.