PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Limit cycle oscillation prediction based on Finite Element-Modal approach

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The central theme of this work was to analyze high aspect ratio structure having structural nonlinearity in low subsonic flow and to model nonlinear stiffness by finite element-modal approach. Total stiffness of high aspect ratio wing can be decomposed to linear and nonlinear stiffnesses. Linear stiffness is modeled by its eigenvalues and eigenvectors, while nonlinear stiffness is calculated by the method of combined Finite Element-Modal approach. The nonlinear modal stiffness is calculated by defining nonlinear static load cases first. The nonlinear stiffness in the present work is modeled in two ways, i.e., based on bending modes only and based on bending and torsion modes both. Doublet lattice method (DLM) is used for dynamic analysis which accounts for the dependency of aerodynamic forces and moments on the frequency content of dynamic motion. Minimum state rational fraction approximation (RFA) of the aerodynamic influence coefficient (AIC) matrix is used to formulate full aeroelastic state-space time domain equation. Time domain dynamics analyses show that structure behavior becomes exponentially growing at speed above the flutter speed when linear stiffness is considered, however, Limit Cycle Oscillations (LCO) is observed when linear stiffness along with nonlinear stiffness, modeled by FE-Modal approach is considered. The amplitude of LCO increases with the increase in the speed. This method is based on cantilevered configuration. Nonlinear static tests are generated while wing root chord is fixed in all degrees of freedom and it needs modification if one requires considering full aircraft. It uses dedicated commercial finite element package in conjunction with commercial aeroelastic package making the method very attractive for quick nonlinear aeroelastic analysis. It is the extension of M.Y. Harmin and J.E. Cooper method in which they used the same equations of motion and modeled geometrical nonlinearity in bending modes only. In the current work, geometrical nonlinearities in bending and in torsion modes have been considered.
Rocznik
Strony
497--514
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
  • Institute of Space Technology, P.O. Box 2750 Islamabad, 44000, Pakistan
autor
  • Beihang University of Aeronautics and Astronautics, China
autor
  • Institute of Space Technology, P.O. Box 2750 Islamabad, 44000, Pakistan
Bibliografia
  • [1] M.J. Patil, D.H. Hodges, and C.E.S. Cesnik. Characterizing the effects of geometrical nonlinearities on aeroelastic behavior of high-aspect-ratio wings. In Proceedings of the International Forum on Aeroelasticity and Structural Dynamics, pages 501–510, Williamsburg, Virginia, USA, 22–25 June, 1999.
  • [2] M. Patil, D. Hodges, and C.E.S. Cesnik. Nonlinear aeroelastic analysis of aircraft with high-aspect-ratio wings. In: Proceedings of the 39th Structures, Structural Dynamics, and Materials Conference, pages 2056–2068, Long Beach, California, 20–23 April, 1998. doi: 10.2514/6.1998-1955.
  • [3] M.J. Patil, D.H. Hodges, and C.E.S. Cesnik. Nonlinear aeroelastic analysis of complete aircraft in subsonic flow. Journal of Aircraft, 37(5):753–760, 2000. doi: 10.2514/2.2685.
  • [4] M.J. Patil and D.H. Hodges. Flight dynamics of highly flexible flying wings. Journal of Aircraft, 43(6):1790–1799, 2006. doi: 10.2514/1.17640.
  • [5] M.J. Patil, D.H. Hodges, and C.E.S. Cesnik. Limit-cycle oscillations in high-aspect-ratio wings. Journal of Fluids and Structures, 15(1):107–132, 2001. doi: 10.1006/jfls.2000.0329.
  • [6] D.H. Hodges. A mixed variational formulation based on exact intrinsic equations for dynamics of moving beams. International Journal of Solids and Structures, 26(11):1253–1273, 1990. doi: 10.1016/0020-7683(90)90060-9.
  • [7] D.A. Peters and M.J. Johnson. Finite-state airloads for deformable airfoils on fixed and rotating wings. In Proceedings of ASME Winter Annual Meeting: Aeroelasticity and Fluid/ Structure Interaction, pages 1–28, New York, 6–11 Nov., 1994.
  • [8] M.C. van Schoor and A.H. von Flotow. Aeroelastic characteristics of a highly flexible aircraft. Journal of Aircraft, 27(10):901–908, 1990. doi: 10.2514/3.45955.
  • [9] C. Pendaries. From the HALE gnopter to the ornithopter – or how to take advantage of aircraft flexibility. In: Proceedings of the 21st Congress of the International Council of the Aeronautical Sciences, Melbourne, Australia, 13–18 Sept. 1998. Paper no. A98-31715.
  • [10] D. Tang and E.H. Dowell. Experimental and theoretical study on aeroelastic response of high-aspect-ratio wings. AIAA Journal, 39(8):1430–1441, 2001. doi: 10.2514/2.1484.
  • [11] M.J. Patil and D.H. Hodges. On the importance of aerodynamic and structural geometrical nonlinearities in aeroelastic behavior of high-aspect-ratio wings. Journal of Fluids and Structures, 19(7):905–915, 2004. doi: 10.1016/j.jfluidstructs.2004.04.012.
  • [12] M.J. Patil, D.H. Hodges, and C.E.S. Cesnik. Nonlinear aeroelasticity and flight dynamics of high-altitude long-endurance aircraft. Journal of Aircraft, 38(1):88–94, 2001. doi: 10.2514/2.2738.
  • [13] D.M. Tang and E.H. Dowell. Effects of geometric structural nonlinearity on flutter and limit cycle oscillations of high-aspect-ratio wings. Journal of Fluids and Structures, 19(3):291–306, 2004. doi: 10.1016/j.jfluidstructs.2003.10.007.
  • [14] D.H. Hodges and E.H. Dowell. Nonlinear equations of motions for the elastic bending and torsion of the twisted non-uniform rotor blades. Technical Report NASA-TN D-7818, 1974.
  • [15] C.T. Tran and D. Petot. Semi-empirical model for the dynamic stall of airfoils in view of the application to the calculation of response of a helicopter blade in forward flight. Vertica, 5(1):35–53, 1981.
  • [16] M.Y. Harmin and J.E. Cooper. Efficient prediction of aeroelastic behaviour including geometric non-linearities. In: Proceedings of the 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, paper no. 2010–2631, Orlando, Florida, USA, 12–15 April, 2010. doi: 10.2514/6.2010-2631.
  • [17] M.Y. Harmin and J.E. Cooper. Aeroelastic behaviour of a wing including geometric nonlinearities. The Aeronautical Journal, 115(1174):767–777, 2011. doi: 10.1017/S0001924000006515.
  • [18] K. Ahmad, Shigang Wu, and H. Rahman. Aeroelastic analysis of high aspect ratio wing in subsonic flow. In Proceedings of 2013 10th International Bhurban Conference on Applied Sciences and Technology (IBCAST), pages 219–223, Islamabad, Pakistan, 15–19 Jan., 2013. doi: 10.1109/IBCAST.2013.6512157.
  • [19] K. Ahmad, H. Rahman, and H.J. Hasham. Nonlinear static aeroelastic analysis of high aspect ratio wing. In Proceedings of 2014 11th International Bhurban Conference on Applied Sciences and Technology (IBCAST), pages 349–353, Islamabad, Pakistan, 14–18 Jan., 2014. doi: 10.1109/IBCAST.2014.6778168.
  • [20] M.I. McEwan, J.R. Wright, J.E. Cooper, and A.Y.T. Leung. A combined modal/finite element analysis technique for the dynamic response of a non-linear beam to harmonic excitation. Journal of Sound and Vibration, 243(4):601–624, 2001. doi: 10.1006/jsvi.2000.3434.
  • [21] J. Katz and A. Plotkin, Low-Speed Aerodynamics. 2nd edition, Cambridge University Press, 2001.
  • [22] J.R. Wright and J.E. Cooper. Introduction to Aircraft Aeroelasticity and Loads. 2nd edition, John Wiley & Sons, Ltd, 2015.
  • [23] M. Karpel. Design for active flutter suppression and gust alleviation using state-space aeroelastic modeling. Journal of Aircraft, 19(3):221–227, 1982. doi: 10.2514/3.57379.
  • [24] A.A. Muravyov and S.A. Rizzi. Determination of nonlinear stiffness with application to random vibration of geometrically nonlinear structures. Computers & Structures, 81(15):1513–1523, 2003. doi: 10.1016/S0045-7949(03)00145-7.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2b17f9d2-f79b-446c-b034-a0052781adf5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.