PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simulating the effects of refractive index difference on the coupling efficiency of periodically segmented waveguide mode converter

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Efficient coupling of micro/nano-optical waveguides with single-mode fibers is the premise for the efficient operation of the integrated photonic chip, which directly determines its optical performance. In this paper, the design principles of periodically segmented waveguide (PSW) structure used for high-efficiency fiber-chip coupling are proposed, and the effects of refractive index difference Δ on coupling efficiency and structural parameters are studied by simulation. It is found that as the Δ of the PSW increases, the period of the PSW tends to be smaller, and the coupling efficiency decreases continuously, reduced by around 0.673 dB in the range of Δ = 3% to Δ = 7%. Through the analysis of PSW optical mechanisms, it demonstrates that the main reason for the decrease of coupling efficiency is that the transmission loss of the tapered section increases sharply with the increase of Δ. High-Δ PSW is difficult to apply to highly integrated silica optical chips due to the unignorably insertion loss.
Czasopismo
Rocznik
Strony
565--577
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
autor
  • State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, Hunan, 410083, China
autor
  • State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, Hunan, 410083, China
  • State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, Hunan, 410083, China
autor
  • State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, Hunan, 410083, China
Bibliografia
  • [1] EROL A.E., SOZUER H.S., High transmission through a 90° bend in a polarization-independent single-mode photonic crystal waveguide, Optics Express 23(25), 2015, pp. 32690–32695, DOI: 10.1364/OE.23.032690.
  • [2] ZHENG Y., GAO P.P., XIAO Z.X., ZHOU J.Y., DUAN J.A., CHEN B., Improving the lot fabrication stability and performance of silica optical films during PECVD, Applied Sciences 9(4), 2019, article 785, DOI: 10.3390/app9040785.
  • [3] JIAO X.Q., YU H.B., YU M., XUE C.Y., REN Y.F., Coupled resonator-induced transparency on a three-ring resonator, Chinese Physics B 27(7), 2018, article 074212, DOI: 10.1088/1674-1056/27/7/074212.
  • [4] BAHADORI M., NIKDAST M., RUMLEY S., DAI L.Y., JANOSIK N., VAN VAERENBERGH T., GAZMAN A., CHENG Q., POLSTER R., BERGMAN K., Design space exploration of microring resonators in silicon photonic interconnects: impact of the ring curvature, Journal of Lightwave Technology 36(13), 2018, pp. 2767–2782, DOI: 10.1109/JLT.2018.2821359.
  • [5] ZHENG Y., WU X.H., JIANG L.Q., WU Y., DUAN J.A., Design of 4-channel AWG multiplexer/demultiplexer for CWDM system, Optik 201, 2020, article 163513, DOI: 10.1016/j.ijleo.2019.163513.
  • [6] ZHENG Y., LI J.P., GAO P.P., DUAN J.A., CHEN B., Packaging experiments of arrayed waveguide grating, Optik 168, 2018, pp. 179–183, DOI: 10.1016/j.ijleo.2018.04.105.
  • [7] ZHENG Y., XIA B.X., High precision Fast Line Detection of alignment and coupling for planar Optical Waveguide device, Optik 145, 2017, pp. 519–528, DOI: 10.1016/j.ijleo.2017.08.040.
  • [8] KWON M.S., SHIN S.Y., Simple and fast numerical analysis of multilayer waveguide modes, Optics Communications 233(1–3), 2004, pp. 119–126, DOI: 10.1016/j.optcom.2004.01.037.
  • [9] SHOJI T., TSUCHIZAWA T., WATANABE T., YAMADA K., MORITA H., Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres, Electronics Letters 38(25), 2002, pp. 1669–1670, DOI: 10.1049/el:20021185.
  • [10] OH M.C., CHU W.S., SHIN J.S., KIM J.W., KIM K.J., SEO J.K., LEE H.K., NOH Y.O., LEE H.J., Polymeric optical waveguide devices exploiting special properties of polymer materials, Optics Communications 362, 2016, pp. 3–12, DOI: 10.1016/j.optcom.2015.07.079.
  • [11] KHAN M.U., JUSTICE J., PETAJA J., KORHONEN T., BOERSMA A., WIEGERSMA S., KARPPINEN M., CORBETT B., Multi-level single mode 2D polymer waveguide optical interconnects using nano-imprint lithography, Optics Express 23(11), 2015, pp. 14630–14639, DOI: 10.1364/OE.23.014630.
  • [12] YASUHARA K., YU F., LSHIGURE T., Circular core single-mode polymer optical waveguide fabricated using the Mosquito method with low loss at 1310/1550 nm, Optics Express 25(8), 2017, pp. 8524–8533, DOI: 10.1364/OE.25.008524.
  • [13] DUDLEY J.M., GENTY G., COEN S., Supercontinuum generation in photonic crystal fiber, Reviews of Modern Physics 78(4), 2006, pp. 1135–1184, DOI: 10.1103/RevModPhys.78.1135.
  • [14] VON FREYMANN G., KITAEV V., LOTSCH B.V., OZIN G.A., Bottom-up assembly of photonic crystals, Chemical Society Reviews 42(7), 2013, pp. 2528–2554, DOI: 10.1039/c2cs35309a.
  • [15] BARCLAY P.E., SRINIVASAN K., BORSELLI M., PAINTER O., Experimental demonstration of evanescent coupling from optical fibre tapers to photonic crystal waveguides, Electronics Letters 39(11), 2003, pp. 842–844, DOI: 10.1049/el:20030565.
  • [16] LUO N., ZHANG Z., Fabrication of a curved microlens array using double gray-scale digital maskless lithography, Journal of Micromechanics and Microengineering 27(3), 2017, article 035015, DOI: 10.1088/1361-6439/aa596a.
  • [17] WEISSMAN Z., HENDEL I., Analysis of periodically segmented waveguide mode expanders, Journal of Lightwave Technology 13(10), 1995, pp. 2053–2058, DOI: 10.1109/50.469728.
  • [18] CHEBEN P., SCHMID J.H., WANG S., XU D.-X., VACHON M., JANZ S., LAPOINTE J., PAINCHAUD Y., PICARD M.-J., Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency, Optics Express 23(17), 2015, pp. 22553–22563, DOI: 10.1364/OE.23.022553.
  • [19] XU X., SUBBARAMAN H., COVEY J., KWONG D., HOSSEINI A., CHEN R.T., Complementary metal-oxide-semiconductor compatible high efficiency subwavelength grating couplers for silicon integrated photonics, Applied Physics Letters 101(3), 2012, article 031109, DOI: 10.1063/1.4737412.
  • [20] DING Y.H., OU H.Y., PEUCHERET C., Ultrahigh-efficiency apodized grating coupler using fully etched photonic crystals, Optics Letters 38(15), 2013, pp. 2732–2734, DOI: 10.1364/OL.38.002732.
  • [21] ALCANTARA L.D.S., TEIXEIRA F.L., CESAR A.C., BORGES B.H.V., A new full-vectorial FD-BPM scheme: application to the analysis of magnetooptic and nonlinear saturable media, Journal of Lightwave Technology 23(8), 2005, pp. 2579–2585.
  • [22] SUJECKI S., Stability analysis of FD-BPM applied in high power semiconductor laser models, Optical and Quantum Electronics 47, 2015, pp. 1415–1419, DOI: 10.1007/s11082-014-0101-2.
  • [23] CAMPBELL M., SHARP D.N., HARRISON M.T., DENNING R.G., TURBERFIELD A.J., Fabrication of photonic crystals for the visible spectrum by holographic lithography, Nature 404, 2000, pp. 53–56, DOI: 10.1038/35003523.
  • [24] FISCHER J., WEGENER M., Three-dimensional optical laser lithography beyond the diffraction limit, Laser & Photonics Reviews 7(1), 2013, pp. 22–44, DOI: 10.1002/lpor.201100046.
  • [25] D’ANGELO M., CHEKHOVA M.V., SHIH Y., Two-photon diffraction and quantum lithography, Physical Review Letters 87(1), 2001, article 013602, DOI: 10.1103/PhysRevLett.87.013602.
  • [26] DONATINI F., DANG L.S., A single-step electron beam lithography of buried nanostructures using cathodoluminescence imaging and low temperature, Nanotechnology 21(37), 2010, article 375303, DOI: 10.1088/0957-4484/21/37/375303.
  • [27] LEE S., JEONG G.S., KIM J., YOON J., HAN S., KANG J.Y., CHUNG S., LEE S.H., Single-step UV diffraction lithography to define a hydrophobic SU-8 interconnected hoodoo structure, Microsystem Technologies 19, 2013, pp. 1025–1032, DOI: 10.1007/s00542-012-1693-8.
  • [28] OKAMOTO K., Fundamentals of Optical Waveguide, Academic Press, America, New York, 2001, pp. 51–70.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2b1382fa-c1c4-412c-91dc-224e2b181160
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.