PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Membrane reactor for enzymatic depolymerization – a case study based on protein hydrolysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The efficiency of enzymatic depolymerization in a membrane reactor was investigated. The model analysis was performed on bovine serum albumin hydrolysis reaction led by three different enzymes, for which kinetic equations have different forms. Comparing to a classic reactor, the reaction yield turns out to be distinctly higher for all types of kinetics. The effect arises from increasing (thanks to the proper selectivity of the applied membrane) the concentration of reagents in the reaction volume. The investigations indicated the importance of membrane selectivity election, residence time and at non-competitive inhibition the substrate (biopolymer) concentration in feed stream. Presented analysis is helpful in these parameters choice for enzymatic hydrolysis of different biopolymers.
Rocznik
Strony
44--48
Opis fizyczny
Bibliogr. 15 poz., rys.
Twórcy
autor
  • Wroclaw University of Science and Technology, Division of Bioprocess and Biomedical Engineering, Wybrzeze Wyspianskiego 27, 50-373 Wrocław, Poland
autor
  • Wroclaw University of Science and Technology, Division of Bioprocess and Biomedical Engineering, Wybrzeze Wyspianskiego 27, 50-373 Wrocław, Poland
autor
  • Wroclaw University of Science and Technology, Division of Bioprocess and Biomedical Engineering, Wybrzeze Wyspianskiego 27, 50-373 Wrocław, Poland
Bibliografia
  • 1. Mahammad, S., Prud’homme, R.K., Roberts, G.R. & Khan, S.A. (2006). Kinetics of enzymatic depolymerization of guar galactomannan. Biomacromolecules 7(9), 2583-2590. DOI: 10.1021/bm060333+.
  • 2. Muzzarelli, R.A.A, Stanic, V. & Ramos, V. (1998). Enzymatic depolymerization of chitins and chitosans. In: Methods in Biotechnology, Vol. 10: Carbohydrate Biotechnology Protocols, Ed. C. Bucke © Humana Press Inc., NJ.
  • 3. Slominska, L., Grajek, W., Grzeskowiak, A. & Gocalek, M. (1998). Enzymatic starch saccharification in an ultrafiltration membrane reactor. Starch 50(9), 390-396. DOI: 0038- 9056/98/0909-0390$17.50+.50/0.
  • 4. Trusek-Holownia, A. & Noworyta, A. (2000). Dipeptide enzymatic synthesis in a two-phase membrane reactor. Chem. Pap. 54(6B), 442-447.
  • 5. Nguyenhuynh, T., Nithyanandam, R., Hwa Chong, Ch. &Krishnaiah, D. (2017). A review on using membrane reactors in enzymatic hydrolysis of cellulose, J. Eng. Sci. Technol. 12(4), 1129-1152.
  • 6. Hang, H., Bao, S., Zhao, M., Wang, B., Zhou, S. & Jiang, B. (2015), Enzyme membrane reactor coupled with nanofiltration membrane process for difructose anhydride III from inulin conversion. Chem. Eng. J. 276, 75-82. DOI: 10.1016/j.cej.2015.04.018.
  • 7. Olano-Martin, E., Mountzouris, K.C., Gibson, G.R. & Rastall, R.A. (2001). Continuous production of pectic oligosaccharides in an enzyme membrane reactor, J. Food Sci. 66 (7), 966-971. DOI: 10.1111/j.1365-2621.2001.tb08220.x.
  • 8. Marquez M.C. & Vazquez M.A. (1999). Modeling of enzymatic protein hydrolysis,” Proc. Biochem. 35, 111-117. DOI: 10.1016/S0032-9592(99)00041-2.
  • 9. Fernandez, A. & Riera F. (2013). β-Lactoglobulin tryptic digestion: a model approach for peptide release. Biochem. Eng. J. 70, 88-96. DOI: 10.1016/j.bej.2012.10.001.
  • 10. Rawlings, N.D., Barrett, A.J. & Bateman, A. (2012). MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 40, 343-350. DOI: 10.1093/nar/gkr987.
  • 11. Trusek-Holownia, A. & Noworyta, A. (2015). A model of kinetics of the enzymatic hydrolysis of biopolymers - a concept for determination of hydrolysate composition. Chem. Eng. Proc. 89, 54-61. DOI: 10.1016/j.cep.2015.01.008.
  • 12. Orecki, A. & Tomaszewska, M. (2007) The oily wastewater treatment using the nanofiltration process. Pol. J. Chem. Technol. 9 (4), 40-42. DOI: 10.2478/v10026-007-0086-8.
  • 13. Trusek-Holownia, A., Przybyl, A. & Noworyta, A. (2014). Zagospodarowanie odpadowej serwatki w kierunku aktywnych peptydow (in Polish). Inz. Ap. Chem. 53 (4), 314-315.
  • 14. Trusek-Holownia, A., Lech, M. & Noworyta, A. (2016). Protein enzymatic hydrolysis integrated with ultrafiltration: Thermolysin application in obtaining peptides. Chem. Eng. J. 305, 61-68. DOI: 10.106/j.cej.2016.05.087.
  • 15. Labus, K., Trusek-Holownia, A. & Noworyta, A. (2015), Kinetics of protein hydrolysis catalyzed by pepsin. In: 42nd International Conference of Slovak Society of Chemical Engineering proceedings, Tatranské Matliare, Slovakia, May 25-29, 2015. Ed. Jozef Markoš, Slovakia, 465-472.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2b0c1072-b673-4858-ba35-7c81298e2cb6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.