PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design and performance evaluation of vehicular visible light communication system under different weather conditions and system parameters

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Vehicular visible light communication is an emerging technology that allows wireless communication between vehicles or between vehicles and infrastructure. In this paper, a vehicular visible light communication system is designed using a non-return to zero on-off keying modulation scheme under the effect of different weather conditions such as clear, haze, and fog. The first model is a light emitting diode-based system and the second is a laser diode-based system. For both models, the influence of system parameters such as beam divergence, transceiver aperture diameters, and receiver responsivity is studied. The impact of the use of the trans-impedance amplifier is also investigated for both models. It was concluded that in the presence of the amplifier, output power of the light emitting diode and laser diode model are increased by 98.46 μW and 0.4719 W, respectively. The performance of the two proposed models is evaluated through bit error rate, quality factor, eye diagram, and output power to have some insightful results about the quality of service for the two proposed models. Under a specific weather condition, the performance of the system would be critical and other techniques should be applied. The maximum achievable link distance for the laser-based and light-emitting diode-based systems is 190 m at a data rate of 25 Gbps and 80 m at a data rate of 60 kbps, respectively, under the same system parameters and weather conditions. The obtained results provide a full idea about the availability of constructing our proposed model in a practical environment, showing a higher performance of the laser diode-based model than that of the light emitting diode-based model.
Rocznik
Strony
art. no. e145580
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • Department of Electronics and Communications Engineering, Higher Technological Institute, 10th of Ramadan City, Egypt
  • Department of Electronics and Communications Engineering, Higher Technological Institute, 10th of Ramadan City, Egypt
  • Arab Academy for Science, Technology and Maritime Transport, 1029 Alexandria, Egypt
  • Department of Electronics and Communications Engineering, Zagazig University, 44519 Zagazig, Egypt
Bibliografia
  • [1] El-Mokadem, E. S., El-Kassas, A. M., Elgarf, T. A. & El-Hennawy, H. BER performance Evaluation For The Downlink NOMA System Over Different Fading Channels With Different Modulation Schemes. in 5th IEEE International Conference on Science and Technology (ICST) 1-6 (2019). https://doi.org/10.1109/ICST47872.2019.9166288.
  • [2] El-Mokadem, E. S., El‐Kassas, A. M., Elgarf, T. A. & El‐Hennawy, H. Throughput enhancement of cognitive M2M networks based on NOMA for 5G communication systems. Int. J. Commun. Syst. 33, e4468 (2020). https://doi.org/10.1002/dac.4468.
  • [3] Yahia, S. et al. Performance study and analysis of MIMO visible light communication-based V2V systems. Opt. Quantum Electron. 54, 1-22 (2022). https://doi.org/10.1007/s11082-022-04015-w.
  • [4] Zhang, J. & Huang, S. Improving the performance of uplink visible light communication in urban streets. J. Supercomput. 78, 3775-3790 (2022). https://doi.org/10.1007/s11227-021-04010-0.
  • [5] Faheem, M., Verma, I. K., Nag, P., Goswami, S. & Singh, V. Performance Analysis of Indoor Visible Light Communication System Using NRZ-OOK Modulation Technique. in Advances in Smart Communication and Imaging Systems (eds. Agrawal, R., Kishore Singh, C. & Goyal, A.) 453-466 (Springer, 2021). https://doi.org/10.1007/978-981-15-9938-5_43.
  • [6] Sindhubala, K. & Vijayalakshmi, B. Simulation of VLC system under the influence of optical background noise using filtering technique. Materials Today: Proc. 4, 4239-4250 (2017). https://doi.org/10.1016/j.matpr.2017.02.127.
  • [7] Manivannan, K., Raja, A. S. & Selvendran, S. Performance investi-gation of visible light communication system using optisystem simulation tool. Int. J. Microw. Opt. Technol. 11, 377-383 (2016).
  • [8] Béchadergue, B. et al. Vehicle-to-Vehicle Optical Wireless Communication With The Smart Corner TM Automotive Headlamp. in Global LIFI Congress (GLC) 1-5 (IEEE, 2019) https://hal.science/hal-02398747/document.
  • [9] Selvendran, S., Sivanantha Raja, A., Esakki Muthu, K. & Lakshmi, A. Certain investigation on visible light communication with OFDM modulated white LED using optisystem simulation. Wirel. Pers. Commun. 109, 1377-1394 (2019). https://doi.org/10.1007/s11277-019-06617-2.
  • [10] Kharbouche, A., Madini, Z. & Zouine, Y. Analysis of Realistic DS-OCDMA/VLC for V2X Communication Using Optisystem. in 7th International Conference on Optimization and Applications (ICOA) 1-5 (IEEE, 2021). https://doi.org/10.1109/ICOA51614.2021.9442666.
  • [11] Siegel, T. & Chen, S.-P. Investigations of free space optical communications under real-world atmospheric conditions. Wirel. Pers. Commun. 116, 475-490 (2021). https://doi.org/10.1007/s11277-020-07724-1.
  • [12] Brima, A. B. S., Ataro, E. & Kamagate, A. Performance enhance-ment of an FSO link using polarized quasi-diffuse transmitter. Heliyon 7, e08248 (2021). https://doi.org/10.1016/j.heliyon.2021.e08248.
  • [13] Karbalayghareh, M. et al. Channel modelling and performance limits of vehicular visible light communication systems. IEEE Trans. Veh. Technol. 69, 6891-6901 (2020). https://doi.org/10.1109/TVT.2020.2993294.
  • [14] Ndjiongue, A. R. & Ferreira, H. C. An overview of outdoor visible light communications. Trans. Emerg. Telecommun. Technol. 29, e3448 (2018). https://doi.org/10.1002/ett.3448.
  • [15] Padhy, J. B. & Patnaik, B. Link performance evaluation of terrestrial FSO model for predictive deployment in Bhubaneswar smart city under various weather conditions of tropical climate. Opt. Quantum Electron. 53, 1-24 (2021). https://doi.org/10.1007/s11082-020-02702-0.
  • [16] Idris, S., Aibinu, A. M., Koyunlu, G. & Sanusi, J. A Survey of Modulation Schemes in Visible Light Communications. in 3rd International Conference on Trends in Electronics and Informatics (ICOEI) 1-7 (IEEE, 2019) https://doi.org/10.1109/ICOEI.2019.8862538.
  • [17] Lorences-Riesgo, A. et al. 200 G outdoor free-space-optics link using a single-photodiode receiver. J. Light. Technol. 38, 394-400 (2020). https://doi.org/10.1109/ICOEI.2019.8862538.
  • [18] Schirripa Spagnolo, G., Cozzella, L. & Leccese, F. Underwater optical wireless communications: Overview. Sensors 20, 2261 (2020). https://doi.org/10.3390/s20082261.
  • [19] Farahneh, H., Hussain, F. & Fernando, X. Performance analysis of adaptive OFDM modulation scheme in VLC vehicular communication network in realistic noise environment. EURASIP J. Wirel. Commun. Netw. 2018, 1-15 (2018). https://doi.org/10.1186/s13638-018-1258-3.
  • [20] Yanikgonul, S. et al. Integrated avalanche photodetectors for visible light. Nat. Commun. 12, 1834 (2021). https://doi.org/10.1038/s41467-021-22046-x.
  • [21] Torres-Zapata, E., Guerra, V., Rabadan, J., Luna-Rivera, M. & Perez-Jimenez, R. VLC network design for high mobility users in urban tunnels. Sensors 22, 88 (2021). https://doi.org/10.3390/s22010088.
  • [22] Fernando, X. & Farahneh, H. Visible Light Communications: Vehicular Applications (IOP Publishing: Bristol, 2019).
  • [23] Eldeeb, H. B., Elamassie, M., Sait, S. M. & Uysal, M. Infrastructure-to-Vehicle visible light communications: channel modelling and performance analysis. IEEE Trans. Veh. Technol. 71, 2240-2250 (2022). https://doi.org/10.1109/TVT.2022.3142991.
  • [24] El-Nayal, M. K., Aly, M. M., Fayed, H. A. & AbdelRassoul, R. A. Adaptive free space optic system based on visibility detector to overcome atmospheric attenuation. Results Phys. 14, 102392 (2019). https://doi.org/10.1016/j.rinp.2019.102392.
  • [25] Georlette, V. et al. Outdoor visible light communication channel modeling under smoke conditions and analogy with fog conditions. Optics 1, 259-281 (2020). http://doi.org/10.3390/opt1030020.
  • [26] Ghassemlooy, Z., Popoola, W. & Rajbhandari, S. Optical wireless communications: system and channel modelling with Matlab®, 2nd edition. (CRC Press, Boca Raton, 2019). https://doi.org/10.1201/9781315151724.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2b08c2d9-f19e-449c-b201-7da6a0d1eaee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.