PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of Tilted Columnar Dendrites at Grain Boundaries During Wire and Laser Additive Manufacturing: a Phase-Field Study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Tilted columnar dendritic morphologies are usually existed in wire and laser additive manufactured parts of GH3039 alloy. Overgrowth behaviors induced by the tilted dendritic arrays with a large tilted angle, and the effect of the angle between the growth direction and the direction vertical locally to the solid substrate on primary spacing, solute concentration and morphological evolution have been investigated at both the converging and the diverging grain boundaries through the phase-field simulation. The formation of cracking depends on solidification behaviors including columnar dendrites growth and micro-segregation in the interdendritic region. Furthermore, the effect of the tilted columnar dendrites on the susceptibility of crack is investigated during wire and laser additive manufacturing.
Twórcy
autor
  • Tsinghua University, Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, School of Materials Science and Engineering, Beijing 100084, China
autor
  • Tsinghua University, Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, School of Materials Science and Engineering, Beijing 100084, China
  • Tsinghua University, Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, School of Materials Science and Engineering, Beijing 100084, China
autor
  • Tsinghua University, Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, School of Materials Science and Engineering, Beijing 100084, China
Bibliografia
  • [1] T. Guraya, S. Singamneni, Z.W. Chen, Microstructure formed during selective laser melting of IN738LC in keyhole mode, Journal of Alloys and Compounds 792, 151-160 (2019).
  • [2] T. Ihle, Competition between kinetic and surface tension anisotropy in dendritic growth, The European Physical Journal B 16, 337-344 (2000).
  • [3] E. Ben-Jacob, P. Garik, The formation of patterns in non-equilibrium growth, Nature 343, 523-530 (1990).
  • [4] Z. Wang, J. Li, J. Wang, Predicting growth direction of tilted dendritic arrays during directional solidification, Journal of Crystal Growth 328, 108-113 (2011).
  • [5] Y.Z. Zhou, A. Volek, N. Green, Mechanism of competitive grain growth in directional solidification of a nickel-base superalloy, Acta Materialia 56, 2631-2637 (2008).
  • [6] H. Yu, J. Li, X. Lin, L. Wang, W. Huang, Anomalous overgrowth of converging dendrites during directional solidification, Journal of Crystal Growth 402, 210-214 (2014).
  • [7] J. Li, Z. Wang, Y. Wang, J. Wang, Phase-field study of competitive dendritic growth of converging grains during directional solidification, Acta Materialia 60, 1478-1493 (2012).
  • [8] C. Gandin, M. Eshelmann, R. Trivedi, Orientation dependence of primary dendrite spacing, Metallurgical and Materials Transactions A 27A, 2727-2739 (1996).
  • [9] T. Haxihimali, A. Karma, F. Gonzales, M. Rappaz, Orientation selection in dendritic evolution, Nature Materials 5, 660-664 (2006).
  • [10] M. Cloots, P.J. Uggowitzer, K. Wegener, Investigations on the microstructure and crack formation of IN738LC samples processed by selective laser melting using Gaussian and doughnut profiles, Materials & Design 89, 770-784 (2016).
  • [11] Z. Wang, S. Ma, W. Sun, M. Zhang, T. Jing, H. Dong, Cellular tip splitting instability during transient growth, Computational Materials Science 155, 364-372 (2018).
  • [12] W. Zheng, Z. Dong, Y. Wei, K. Song, Onset of the initial instability during the solidification of welding pool of aluminum alloy under transient conditions, Journal of Crystal Growth 402, 203-209 (2014).
  • [13] P. Kwapisiński, Z. Lipnicki, A.A. Ivanova, W. Wołczyński, Role of the Structural and Thermal Peclet Numbers in the Brass Continuous Casting, Archives of Foundry Engineering 17 (2), 49-54 (2017).
  • [14] W. Wołczyński, Entropy Production in the Stationary Eutectic Growth, Archives of Metallurgy and Materials 65 (1), 403-416 (2020).
  • [15] W. Wołczyński, Formation of Concave-Convex Interface Shape during Oriented Eutectic Growth, Crystal Research and Technology 26, 173-178 (1991).
  • [16] W. Wołczyński, Pattern Selection in the Eutectic Growth-Thermodynamic Interpretation, Archives of Metallurgy and Materials 65 (2), 653-666 (2020).
  • [17] W. Wołczyński, Contribution to Transition Layer Determination for Oriented Eutectic Growth, Crystal Research and Technology 25, 1433-1437 (1990).
  • [18] W. Wołczyński, Concentration Micro-Field for Lamellar Eutectic Growth, Defect and Diffusion Forum 272, 123-138 (2007).
  • [19] W. Wołczyński, Development of the Jackson and Hunt Theory for Rapid Eutectic Growth, Archives of Metallurgy and Materials 63 (1), 65-72 (2018).
Uwagi
The present work is financially supported by The National Key Research and Development Program of China No. 2017YFB1103700.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2b00f787-c47f-4643-86bc-0a4ff3e4471b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.