PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ability of Response Surface Methodology to Optimize Photocatalytic Degradation of Amoxicillin from Aqueous Solutions Using Immobilized TiO2/Sand

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The response surface method was applied to optimize operational factors in the solar photocatalytic process on the removal of Amoxicillin (AMOX) residues from aqueous solution using TiO2 immobilized on the sand as a catalyst. The results reveal that the degradation percentage of AMOX is 93.12%, when optimal conditions of pH=5, 75 mg/l of TiO2, 400 mg/l of H2O2, and 10 mg/l of AMOX concentration at 150 min irradiation time were used. Furthermore, the model’s expected response results have reasonable similarity with the actual data (R2 = 93.58%), demonstrating the efficiency of this method in making an accurate prediction. A second-order polynomial multiple regression model was used to evaluate the responses, which confirms that was a satisfactory adjustment with the achieved data through analysis of variance (R2 = 93.58%, R2adj = 91.48% and R2pred =89.68%). In addition, it is observed that the removal of undesirable compounds follows a pseudo-2nd order kinetic model with R2 = 0.9862. In conclusion, with the ease of usage of immobilized TiO2 and good photocatalytic efficiency, the findings showed the potential application to the antibiotics from an aqueous solution.
Rocznik
Strony
293--304
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • Water Resource Technical, Al-Hawija Technical Institute, Iraq
  • Department of Environmental Engineering/ College of Engineering, University of Baghdad, Iraq
Bibliografia
  • 1. Abdel-Maksoud Y.K., Imam E., Ramadan A.R. 2018. Sand supported TiO2 photocatalyst in a tray photo-reactor for the removal of emerging contaminants in wastewater. Catalysis Today, 313, 55–62.
  • 2. Balarak D., Mostafapour F., Joghtaei A. 2017. Thermodynamic analysis for adsorption of amoxicillin onto magnetic carbon nanotubes. British Journal of Pharmaceutical Research, 16(6), 1–11.
  • 3. Bielan Z., Sulowska A., Dudziak S., Siuzdak K., Ryl J., Zielinska-Jurek A. 2020. Defective TiO2 core-shell magnetic photocatalyst modified with plasmonic nanoparticles for visible light-induced photocatalytic activity, Catalysts, 1–20(10), 672.
  • 4. Chakrabarti S., Dutta B.K. 2004. Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. J. Hazard. Mater, 112(3), 269–278.
  • 5. Chauhan A., Sillu D., Agnihotri S. 2018. Removal of pharmaceutical contaminants in wastewater using nanomaterials: a comprehensive review. Current Drug Metabolism, 20(6), 483–505.
  • 6. Chen F., Yang Q., Li X., Zeng G., Wang D., Niu C., Zhao J., An H., Xie T., Deng Y. 2017. Hierarchical Assembly of Graphene-Bridged Ag3PO4/Ag/BiVO4 (040) Z-Scheme Photocatalyst: An Efficient, Sustainable and Heterogeneous Catalyst with Enhanced Visible-Light Photoactivity towards Tetracycline Degradation under Visible Light Irradiation, Applied Catalysis B: Environmental, 200, 330–342.
  • 7. Daneshvar N., Salari D., Niaei A., Rasoulifard M.H., Khataee A.R. 2005. Immobilization of TiO2 Nanopowder on Glass Beads for the Photocatalytic Decolorization of an Azo Dye C.I. Direct Red.Journal of Environmental Science and Health Part A Toxic/Hazardous Substances and Environmental Engineering, 40(8), 1605–1617.
  • 8. Danfá S., Martins R.C., Quina M.J., Gomes J. 2021. Supported TiO2 in Ceramic Materials for the Photocatalytic Degradation of Contaminants of Emerging Concern in Liquid Effluents: A Review, Molecules, 26(17), 5363.
  • 9. Darvishmotevalli M., Zarei A., Moradniac M., Noorisepehr M., Mohammadi H. 2019. Optimization of saline wastewater treatment using electrochemical oxidation process: Prediction by RSM method, Methods X, 6, 1101–1113.
  • 10. Dutta S., Ghosh A., Moi M.C., Saha R. 2015. Application of Response Surface Methodology for Optimization of Reactive Azo Dye Degradation Process by Fenton’s Oxidation. International Journal of Environmental Science and Development, 6(11), 818–823.
  • 11. Elmolla E.S., Chaudhuri M. 2010. Photocatalytic Degradation of Amoxicillin, Ampicillin and Cloxacillin Antibiotics in Aqueous Solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis. DES, 252(1–3), 46–52.
  • 12. Ghorbani F., Kamari S. 2017. Application of Response Surface Methodology for Optimization of Methyl Orange Adsorption by Fe-Grafting Sugar Beet Bagasse, Adsorption Science and Technology, 35(3–4): 317–338
  • 13. Jouali A., Salhi A., Aguedach A., Lhadi E. 2020. Photo-Catalytic Degradation of Polyphenolic Tannins in Continuous-Flow Reactor using Titanium Dioxide Immobilized on a Cellulosic Material, Water Science & Technology, 82(7), 1454–1466.
  • 14. Kalash K.R., Al-Furaiji M.H. 2020. Advanced Oxidation of Antibiotics Polluted Water using Titanium Dioxide in Solar Photocatalysis Reactor. Journal of Engineering, 26(2), 1–13.
  • 15. Khataee A.R., Fathinia, M., Joo S.W. 2013. Simultaneous Monitoring of Photocatalysis of Three Pharmaceuticals by Immobilized TiO2 Nanoparticles: Chemometric Assessment, Intermediates Identification and Ecotoxicological Evaluation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 112, 33–45.
  • 16. Kutuzova A., Dontsova T., Kwapinski W. 2021. Application of TiO2-Based Photocatalysts to Antibiotics Degradation: Cases of Sulfamethoxazole, Trimethoprim and Ciprofloxacin. Catalysts, 11(6), 728.
  • 17. Lofranoa G., Pedrazzanib R., Libralatoc G., Carotenuto M. 2017. Advanced Oxidation Processes for Antibiotics Removal: A Review. Current Organic Chemistry, 21, 1–14.
  • 18. Malakootian M., Nasiri A., Gharaghani M.A. 2019. Photocatalytic Degradation of Ciprofloxacin Antibiotic by TiO2 Nanoparticles Immobilized on a Glass Plate, Chemical Engineering Communications, 207(1), 56–72.
  • 19. Manassero A., Satuf M.L., Alfano O.M. 2017. Photocatalytic Degradation of an Emerging Pollutant by TiO2-Coated Glass Rings: A Kinetic Study, Environmental Science and Pollution Research, 24(7), 6031–6039.
  • 20. Méndez-López A., Zelaya-Ángel O., Toledano-Ayala M., Torres-Pacheco I., Pérez-Robles J.F., Acosta-Silva Y.J. 2020. The Influence of Annealing Temperature on the Structural and Optical Properties of ZrO2 Thin Films and How Affects the Hydrophilicity. Crystals, 10(6), 454.
  • 21. Mohammed A.A., Al-Musawi T.J., Kareem S.L., Zarrabi M., Al-Ma’abreh M. 2020a. Simultaneous Adsorption of Tetracycline, Amoxicillin, and Ciprofloxacin by Pistachio Shell Powder Coated with Zinc Oxide Nanoparticles. Arabian Journal of Chemistry, 13(3), 4629–4643.
  • 22. Mohammed N.A., Alwared A.I., Salman M.S. 2020b. Photocatalytic Degradation of Reactive Yellow Dye in Wastewater using H2O2/TiO2/UV Technique, Iraqi Journal of Chemical and Petroleum Engineering, 21(1), 15–21.
  • 23. Morjène L., Tasbihi M., Schwarze M., Schomäcker R., Aloulou F.and Seffen M.2020. A Composite of Clay, Cement, and Wood as Natural Support Material for the Immobilization of Commercial Titania (P25, P90, PC500, C-TiO2) towards Photocatalytic Phenol Degradation. Water Science and Technology, 81(9), 1882–1893.
  • 24. Ngoepe N.M., Hato M.J., Modibane K.D., HintshoMbita N.C. 2020, Biogenic Synthesis of Metal Oxide Nanoparticle Semiconductors for Wastewater Treatment, Photocatalysts in Advanced Oxidation Processes for Wastewater Treatment.
  • 25. Olama N., Dehghani M., Malakootian M. 2018. The Removal Of Amoxicillin From Aquatic Solutions Using the TiO2/UV-C nanophotocatalytic method doped with trivalent iron. Applied Water Science, 8(4), 1–12.
  • 26. Ozturk D., Sahan T., Bayram T., Erkus A. 2017. Application of Response Surface Methodology (RSM) to Optimize the Adsorption Conditions of Cationic Basic Yellow 2 onto Pumice Samples as a New Adsorbent. Fresenius Environmental Bulletin, 26(5), 3285–3292.
  • 27. Salam K.K., Agarry S.E., Arinkoola A.O., Shoremekun I.O. 2015. Optimization of Operating Conditions Affecting Microbiologically Influenced Corrosion of Mild Steel Exposed to Crude Oil Environments Using Response Surface Methodology. British Biotechnology Journal, 7(2), 68–78.
  • 28. Sharma K., Talwar S., Verma A.K., Choudhury D., Mansouri B. 2020. Innovative Approach of In-Situ Fixed Mode Dual Effect (photo-Fenton and photocatalysis) for Ofloxacin degradation. Korean J. Chem. Eng., 37(2), 350–357.
  • 29. Tarfiei A., Services H., Eslami H., Ebrahimi A.A., Services H. 2018. Pharmaceutical Pollution in the Environment and Health Hazards, Journal of Environmental Health and Sustainable Development, 3(2), 491–495.
  • 30. Tekin G., Ersöz G., Atalay S. 2018. Degradation of Benzoic Acid by Advanced Oxidation Processes in the Presence of Fe or Fe-TiO2 Loaded Activated Carbon Derived from Walnut Shells: A Comparative Study. Journal of Environmental Chemical Engineering, 6(2), 1745–1759.
  • 31. Tio N. 2017. Amoxicillin Photodegradation by Nanocrystalline TiO2. Chemical Industry and Chemical Engineering Quarterly, 23(2), 187–195.
  • 32. Tong K., Yang Y.L., Du X. 2020. Modelling of TiO2based packing bed photocatalytic reactor with raschig rings for phenol degradation by coupled CFD and DEM. Chemical Engineering Journal, 400, 125988.
  • 33. Türkay G.K., Kumbur H. 2019. Investigation of Amoxicillin Removal from Aqueous Solution by Fenton and Photocatalytic Oxidation Processes. Kuwait J. Sci., 46(2), 85–93.
  • 34. Zaier M., Vidal L., Garreau S.H., Balan L. 2017. Generating Highly Reflective and Conductive Metal Layers through A Light – Assisted Synthesis and Assembling of Silver Nanoparticles in A Polymer Matrix. Scientific Reports, 7, 1241.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2afc40b6-fb3e-4d60-9d4c-d678f8850282
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.