PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The system reliability of steel trusses with correlated variables

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Systemowa analiza niezawodności stalowych kratownic ze skorelowanymi zmiennymi
Języki publikacji
EN
Abstrakty
EN
The paper focuses on the system reliability of steel trusses with correlated variables. The correlation between bearing capacities of bars was considered. Two static truss schemes were considered. Nodal forces were the only load. The Finite Element Method analysis was conducted in Robot Structural Analysis program. To conduct system reliability analysis it is essential to find cut-sets, it was realized by stiffness matrix spectral analysis. Then reliability analysis was performed in Sysrel module of Strurel computing environment. First Order Reliability Method was used as the base, Subset Simulation method was used to check the correctness of the results. The sensitivity analysis of reliability index enabled the authors to draw conclusions, which variables have the greatest influence on the reliability of the structure. The effects of actions and bearing capacities were assumed to be the only random variables and that the excessing the bearing capacities of bars is the only way the structure can get into failure area.
PL
W artykule przedstawiono analizę wpływu korelacji między zmiennymi losowymi na uzyskiwany wskaźnik niezawodności, z wykorzystaniem analizy systemowej. W pracy uwzględniono kratownice stalowe o dwóch różnych geometriach, w obu przypadkach były to konstrukcje statycznie niewyznaczalne. Założono, że jedynym obciążeniem działającym na kratownice są siły skupione, zaczepione w węzłach pasa dolnego. W pierwszym kroku przeprowadzono obliczenia statyczno-wytrzymałościowe w programie Robot Structural Analysis, uzyskując wartości nośności oraz efektu oddziaływań dla poszczególnych prętów kratownic. Jako zmienne losowe przyjęto efekt oddziaływań (E) oraz nośności poszczególnych elementów (N), o współczynnikach zmienności odpowiednio 6% i 10%. Założono, że wszystkie zmienne mają rozkład normalny. Jako kryterium zniszczenia elementu przyjęto przekroczenie nośności w prętach. Po oszacowaniu niezawodności poszczególnych elementów określono wszystkie możliwe schematy zniszczenia (cut-sets). W tym celu wykorzystano analizę spektralną macierzy sztywności konstrukcji, z wykorzystaniem informacji o niezawodnościach elementów.
Rocznik
Strony
163--178
Opis fizyczny
Bibliogr. 32 poz., il., tab.
Twórcy
  • Kielce University of Technology, Faculty of Civil Engineering and Architecture, Kielce, Poland
  • Kielce University of Technology, Faculty of Civil Engineering and Architecture, Kielce, Poland
Bibliografia
  • [1] R. Rackwitz and B. Fiessler, “Structural reliability under combined random load sequences”, Computers & Structures, vol. 9, no. 5, pp. 489-494, 1978, doi: 10.1016/0045-7949(78)90046-9.
  • [2] A. Hasofer and N. Lind, “Exact and Invariant Second-Moment Code Format”, Journal of the Engineering Mechanics Division ASCE, vol. 100, no. 1, pp. 111-121, 1974.
  • [3] C.A. Cornell “ A probability based structural code”, ACI-Journal, vol. 66, pp. 974-985, 1969.
  • [4] M. Hohenbichler, S. Gollwitzer, W. Kruse and R. Rackwitz, “New light on first and second order reliability methods”, Structural Safety, vol. 4, no. 4, pp. 267-284, 1987, doi: 10.1016/0167-4730(87)90002-6.
  • [5] J. Szafran and M. Kamiński, “From full-scale testing of steel lattice towers to stochastic reliability analysis”, Archives of Mechanics, vol. 69, pp. 371-388, 2017.
  • [6] J. Szafran, K. Juszczyk-Andraszyk, and M. Kamiński, “Numerical tool for assessing reliability of steel lattice tower subjected to atmospheric corrosion”, presented at 4th Polish Congress of Mechanics and 23rd International Conference on Computer Methods in Mechanics PCM-CMM-2019, 8-12 September, 2019, Kraków, Poland.
  • [7] M.R. Rajashekhar and B.R. Ellingwood, “A new look at the response surface approach for the reliability analysis”, Structural Safety, vol. 12, no. 3, pp. 205-220, 1993, doi: 10.1016/0167-4730(93)90003-J.
  • [8] K. Winkelmann and J. Górski “The use of response surface methodology for reliability estimation of composite engineering structures”, Journal of Theoretical and Applied Mechanics, vol. 52, no. 4, pp. 1019-1032, 2014, doi: 10.15632/jtam-pl.52.4.1019.
  • [9] K. Winkelmann, J. Bosch, and J. Górski, “Structural reliability of overhead power lines by means of Monte Carlo Method and RSM”, in PCM-CMM-2015 – 3rd Polish Congress of Mechanics and 21st International Conference on Computer Methods in Mechanics – Book of Short Papers, vol. 2. Gdańsk, Poland, 2015, pp. 747-748.
  • [10] A. Dudzik and B. Potrzeszcz-Sut, “The structural reliability analysis using explicit neural state functions”, MATEC Web of Conferences, vol. 262, art. no. 10002, 2019, doi: 10.1051/matecconf/201926210002.
  • [11] J. Kaliszuk, “Hybrid Monte Carlo Method in the reliability analysis of structure”, Computer Assisted Mechanics and Engineering Sciences, vol. 18, pp. 205-216, 2011.
  • [12] D.-S. Kim, S.-Y. Ok, J. Song and H.-M. Koh, “System reliability analysis using dominant failure modes identified by selective searching technique”, Reliability Engineering & System Safety, vol. 119, pp. 316-331, 2013, doi: 10.1016/j.ress.2013.02.007.
  • [13] J. Safari, “Multi-objective reliability optimization of series parallel systems with a choice of redundancy strategies”, Reliability Engineering & System Safety, vol. 108, pp. 10-20, 2012, doi: 10.1016/j.ress.2012.06.001.
  • [14] A. Peiravi, M. Karbasian, M.A. Ardakan, and D.W. Coit, “Reliability optimization of series-parallel systems with K-mixed redundancy strategy”, Reliability Engineering & System Safety, vol. 183, pp. 17-28, 2019, doi: 10.1016/j.ress.2018.11.008.
  • [15] A.T. Siacara, G.F. Napa-García, A.T. Beck, and M.M. Futai, “Reliability analysis of earth dams using direct coupling”, Journal of Rock Mechanics and Geotechnical Engineering, vol. 12, no. 2, pp. 366-380, 2020, doi: 10.1016/j.jrmge.2019.07.012.
  • [16] S.P. Ontiveros-Péreza and L.F.F. Miguel, “Reliability-based optimum design of multiple tuned mass dampers for minimization of the probability of failure of buildings under earthquakes”, Structures, vol. 42, pp. 144-159, 2022, doi: 10.1016/j.istruc.2022.06.015.
  • [17] K. Kubicka, U. Radoń, and W. Szaniec “Comparison of the reliability methods for steel trusses subjected to fire”, IOP Conference Series – Materials Science and Engineering, vol. 245, no. 3, 2017, doi: 10.1088/1757-899X/245/3/032061.
  • [18] K. Kubicka and U. Radoń, “The impact of support type on the reliability of steel trusses subjected to the action of a fire”, Applied Sciences-Basel, vol. 10, no. 21, 2020, doi: 10.3390/app10217916.
  • [19] K. Kubicka and U. Radoń, “Influence of randomness of buckling coefficient on the reliability index value under fire condition”, Archives of Civil Engineering, vol. 64, no. 3, pp. 173-179, 2018, doi: 10.2478/ace-2018-0037.
  • [20] B. Potrzeszcz-Sut and A. Dudzik, “The application of hybrid method for the identification of elastic-plastic material parameters”, Materials, vol. 15, no. 12, 2022, doi: 10.3390/ma15124139.
  • [21] 45 L. Buda-Ożóg, K. Sieńkowska, and I. Skrzypczak, “Reliability of beams subjected to torsion designed using STM”, Archives of Civil Engineering, vol. 66, no. 3, pp. 555-573, 2020, doi: 10.24425/ace.2020.134413.
  • [22] M. Maślak and M. Pazdanowski, “Time-to-failure forecast for corroded shell of above-ground steel tank used to store liquid fuels”, Archives of Civil Engineering, vol. 67, no. 1, pp. 303-322, 2021, doi: 10.24425/ace.2021.136475.
  • [23] P. Zabojszcza, U. Radoń, and W. Szaniec, “Probabilistic approach to limit states of a steel dome”, Materials, vol. 14, no. 19, 2021, doi: 10.3390/ma14195528.
  • [24] I. Papaioannou, W. Betz, K. Zwirglmaier, and D. Straub, “MCMC algorithms for Subset Simulation”, Probabilistic Engineering Mechanics, vol. 41, pp. 89-103, 2015, doi: 10.1016/j.probengmech.2015.06.006.
  • [25] W. Betz, I. Pappaioannou, and D. Straub, “Bayesian post-processing of Monte Carlo simulation in reliability analysis”, Reliability Engineering and System Safety, vol. 227, 2022, doi: 10.1016/j.ress.2022.108731.
  • [26] S.K. Au and J.L. Beck, “Estimation of small failure probabilities in high dimensions by subset simulation”, Probabilistic Engineering Mechanics, vol. 16, no. 4, pp. 263-277, 2001, doi: 10.1016/S0266-8920(01)00019-4.
  • [27] Strurel. [Online]. Available: www.strurel.de.
  • [28] W. Mochocki and U. Radoń, “Analysis of basic failure scenarios of a truss tower in a probabilistic approach”, Applied Sciences, vol. 9, no. 13, 2019, doi: 10.3390/app9132662.
  • [29] K. Kubicka, P. Obara, U. Radoń, and W. Szaniec, “Assessment of steel truss fire safety in terms of the system reliability analysis”, Archives of Civil and Mechanical Engineering, vol. 19, no. 2, pp. 417-427, 2019, doi: 10.1016/j.acme.2018.12.002.
  • [30] K. Kubicka, “The new method of searching cut-sets in the system reliability analysis of plane steel trusses”, Applied Sciences, vol. 12, no. 10, 2022, doi: 10.3390/app12105276.
  • [31] P. Zabojszcza and U. Radoń, “Stability analysis of the single-layer dome in probabilistic description by the Monte Carlo method”, Journal of Theoretical and Applied Mechanics, vol. 58, no. 2, pp. 425-436, 2020, doi: 10.15632/jtam-pl/118950.
  • [32] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller, “Equation of state calculations by fast computing machines”, The Journal of Chemical Physics, vol. 21, no. 6, pp. 1087-1092, 1953.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2af98085-62c0-4b1a-bd47-47c915a37713
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.