Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper describes an experimental investigation into confinement effects provided by circular tubular sections to rubberised concrete materials under combined loading. The tests include specimens with 0%, 30% and 60% rubber replacement of mineral aggregates by volume. After describing the experimental arrangements and specimen details, the results of bending and eccentric compression tests are presented, together with complementary axial compression tests on stub-column samples. Tests on hollow steel specimens are also included for comparison purposes. Particular focus is given to assessing the confinement effects in the infill concrete as well as their influence on the axial–bending cross-section strength interaction. The results show that whilst the capacity is reduced with the increase in the rubber replacement ratio, an enhanced confinement action is obtained for high rubber content concrete compared with conventional materials. Test measurements by means of digital image correlation techniques show that the confinement in axial compression and the neutral axis position under combined loading depend on the rubber content. Analytical procedures for determining the capacity of rubberised concrete infilled cross-sections are also considered based on the test results as well as those from a collated database and then compared with available recommendations. Rubber content-dependent modification factors are proposed to provide more realistic representations of the axial and flexural cross-section capacities. The test results and observations are used, in conjunction with a number of analytical assessments, to highlight the main parameters influencing the behaviour and to propose simplified expressions for determining the cross-section strength under combined compression and bending.
Czasopismo
Rocznik
Tom
Strony
208--227
Opis fizyczny
Bibliogr. 54 poz., fot., rys., wykr.
Twórcy
autor
- Department of Civil and Environmental Engineering, Imperial College London, London, UK
autor
- Department of Civil and Environmental Engineering, Imperial College London, London, UK
- Department of Civil and Environmental Engineering, University of Surrey, Guildford, UK
autor
- Department of Civil and Environmental Engineering, Imperial College London, London, UK
Bibliografia
- [1] Bompa DV, Elghazouli AY, Xu B, Stafford PJ, Ruiz-Teran AM. Experimental assessment and constitutive modelling of rubberised concrete materials. Constr Build Mater. 2017;137:246–60. https://doi. org/ 10. 1016/j. conbu ildmat. 2017. 01. 086.
- [2] Strukar K, Šipoš TK, Miličević I, Bušić R. Potential use of rubber as aggregate in structural reinforced concrete element–a review. Eng Struct. 2019;188:452–68. https:// doi. org/ 10. 1016/j. engst ruct. 2019. 03. 031.
- [3] Raffoul S, Garcia R, Pilakoutas K, Guadagnini M, Medina NF. Optimisation of rubberised concrete with high rubber content: an experimental investigation. Constr Build Mater. 2016;124:391–404. https:// doi. org/ 10. 1016/j. conbuildmat. 2016. 07. 054.
- [4] Son KS, Hajirasouliha I, Pilakoutas K. Strength and deformability of waste tyre rubber-filled reinforced concrete columns. Constr Build Mater. 2011;25(1):218–26. https:// doi. org/ 10. 1016/j. conbuildmat. 2010. 06. 035.
- [5] Elghazouli AY, Bompa DV, Xu B, Ruiz-Teran AM, Stafford PJ. Performance of rubberised reinforced concrete members under cyclic loading. Eng Struct. 2018;166:526–45. https:// doi. org/ 10. 1016/j. engst ruct. 2018. 03. 090.
- [6] Bompa DV, Elghazouli AY. Stress–strain response and practical design expressions for FRP-confined recycled tyre rubber concrete. Constr Build Mater. 2020;237:117633. https:// doi. org/ 10. 1016/j. conbu ildmat. 2019. 117633.
- [7] Raffoul S, Escolano-Margarit D, Garcia R, Guadagnini M, Pilakoutas K. Constitutive model for rubberized concrete passively confined with FRP laminates. J Compos Constr. 2019;23(6):04019044. https:// doi. org/ 10. 1061/ (ASCE) CC. 1943-5614. 00009 72.
- [8] Bompa DV, Elghazouli AY. Behaviour of confined rubberised concrete members under combined loading conditions. Mag Concr Res. 2019. https:// doi. org/ 10. 1680/ jmacr. 19. 00121.
- [9] Elchalakani M, Hassanein MF, Karrech A, Yang B. Experimental investigation of rubberised concrete-filled double skin square tubular columns under axial compression. Eng Struct. 2018;171:730–46. https:// doi. org/ 10. 1016/j. engst ruct. 2018. 05. 123.
- [10] Han LH, Li W, Bjorhovde R. Developments and advanced applications of concrete-filled steel tubular (CFST) structures: members. J Constr Steel Res. 2014;100:211–28. https:// doi. org/ 10. 1016/j. jcsr. 2014. 04. 016.
- [11] Nematzadeh M, Hajirasouliha I, Haghinejad A, Naghipour M. Compressive behaviour of circular steel tube-confined concrete stub columns with active and passive confinement. Steel Compos Struct. 2017;24(3):323–37. https:// doi. org/ 10. 12989/ scs. 2017. 24.3. 323.
- [12] Zhu JY, Chan TM. Experimental investigation on steel-tube-confined-concrete stub column with different cross-section shapes under uniaxial-compression. J Constr Steel Res. 2019;162:105729. https:// doi. org/ 10. 1016/j. jcsr. 2019. 105729.
- [13] Duarte APC, Silva BA, Silvestre N, De Brito J, Júlio E, Castro JM. Tests and design of short steel tubes filled with rubberised concrete. Eng Struct. 2016;112:274–86. https:// doi. org/ 10. 1016/j. engst ruct. 2016. 01. 018.
- [14] Silva A, Jiang Y, Castro JM, Silvestre N, Monteiro R. Experimental assessment of the flexural behaviour of circular rubberized concrete-filled steel tubes. J Constr Steel Res. 2016;122:557–70. https:// doi. org/ 10. 1016/j. jcsr. 2016. 04. 016.
- [15] Elchalakani M, Hassanein MF, Karrech A, Fawzia S, Yang B, Patel VI. Experimental tests and design of rubberised concrete filled double skin circular tubular short columns. I. Structures. 2018;15:196–210. https:// doi. org/ 10. 1016/j. istruc. 2018. 07. 004.
- [16] Abuzaid O, Nabilah AB, Safiee NA, Azline MN. Rubberized concrete filled steel tube. In: IOP Conference Series: Earth and Environmental Science (vol. 357(1)). IOP Publishing; 2019. p. 012014. https:// doi. org/ 10. 1088/ 1755- 1315/ 357/1/ 012014.
- [17] Duarte APC, Silva BA, Silvestre N, De Brito J, Júlio E, Castro JM. Experimental study on short rubberized concrete-filled steel tubes under cyclic loading. Compos Struct. 2016;136:394–404. https:// doi. org/ 10. 1016/j. comps truct. 2015. 10. 015.
- [18] Dong M, Elchalakani M, Karrech A, Fawzia S, Ali MSM, Yang B, Xu SQ. Circular steel tubes filled with rubberised concrete under combined loading. J Constr Steel Res. 2019;162:105613. https:// doi. org/ 10. 1016/j. jcsr. 2019. 05. 003.
- [19] Lee SH, Uy B, Kim SH, Choi YH, Choi SM. Behavior of high strength circular concrete-filled steel tubular (CFST) column under eccentric loading. J Constr Steel Res. 2011;67(1):1–13. https:// doi. org/ 10. 1016/j. jcsr. 2010. 07. 003.
- [20] Silva A, Jiang Y, Castro JM, Silvestre N, Monteiro R. Monotonic and cyclic flexural behaviour of square/rectangular rubberized concrete-filled steel tubes. J Constr Steel Res. 2017;139:385–96. https:// doi. org/ 10. 1016/j. jcsr. 2017. 09. 006.
- [21] CEN European Committee for Standardization) 2004 EN 1994-1-1 Eurocode 4: Design of composite steel and concrete structures-Part 1-1: General rules and rules for buildings. London: British Standards.
- [22] Zhang Y, Zhao J, Yuan W. Study on compressive bearing capacity of concrete-filled square steel tube column reinforced by circular steel tube inside. J Civ Eng Manag. 2013;19(6):787–95. https:// doi. org/ 10. 3846/ 13923 730. 2013. 799088.
- [23] Shen Q, Wang J, Wang J, Ding Z. Axial compressive performance of circular CFST columns partially wrapped by carbon FRP. J Constr Steel Res. 2019;155:90–106. https:// doi. org/ 10. 1016/j. jcsr. 2018. 12. 017.
- [24] Chang X, Ru ZL, Zhou W, Zhang YB. Study on concrete-filled stainless steel–carbon steel tubular (CFSCT) stub columns under compression. Thin Walled Struct. 2013;63:125–33. https:// doi. org/ 10. 1016/j. tws. 2012. 10. 002.
- [25] O’Shea MD, Bridge RQ. Design of circular thin-walled concrete filled steel tubes. Struct Eng. 2000;126:1295–303. https:// doi. org/ 10. 1061/ (ASCE) 0733- 9445(2000) 126: 11(1295).
- [26] Han LH, Yao GH. Experimental behaviour of thin-walled hol-low structural steel (HSS) columns filled with self-consolidating concrete (SCC). Thin Walled Struct. 2004;42(9):1357–77. https:// doi. org/ 10. 1016/j. tws. 2004. 03. 016.
- [27] O’Shea MD, Bridge RQ. Tests on circular thin-walled steel tubes filled with medium and high strength concrete. Res. Rep. R755, Dept. of Civ. Engrg., University of Sydney, Sydney, Australia; 1997.
- [28] Wang W, Ma H, Li Z, Tang Z. Size effect in circular concrete-filled steel tubes with different diameter-to-thickness ratios under axial compression. Eng Struct. 2017;151:554–67. https:// doi. org/ 10. 1016/j. engst ruct. 2017. 08. 022.
- [29] Lai MH, Ho JCM. Uni-axial compression test of concrete-filled-steel-tube columns confined by tie bars. Procedia Eng. 2013;57:662–9. https:// doi. org/ 10. 1016/j. proeng. 2013. 04. 084.
- [30] Yu ZW, Ding FX, Cai CS. Experimental behavior of circular concrete-filled steel tube stub columns. J Constr Steel Res. 2007;63(2):165–74. https:// doi. org/ 10. 1016/j. jcsr. 2006. 03. 009.
- [31] Lai MH, Ho JCM. Effect of continuous spirals on uni-axial strength and ductility of CFST columns. J Constr Steel Res. 2015;104:235–49. https:// doi. org/ 10. 1016/j. jcsr. 2014. 10. 007.
- [32] CEN (European Committee for Standardization) (2009) EN 12390–2:2009, Testing Hardened Concrete: Making and Curing Specimens for Strength Tests, Brussels (Belgium), CEN.
- [33] CEN (European Committee for Standardization) (2001) EN 10002-1 Metallic materials-Tensile testing-Part 1: Method of test at ambient temperature, London: British Standards Institution.
- [34] LaVision, n.d. Digital Image Correlation (DIC). https:// www. lavis ion. de/ en/ techn iques/ dic- dvc/. Accessed 23 Dec 2020.
- [35] Buchanan C, Gardner L, Liew A. The continuous strength method for the design of circular hollow sections. J Constr Steel Res. 2016;118:207–16. https:// doi. org/ 10. 1016/j. jcsr. 2015. 11. 006.
- [36] Cedron F, Elghazouli AY. Seismic performance of single layer steel cylindrical lattice shells. J Constr Steel Res. 2019;163:105772. https:// doi. org/ 10. 1016/j. jcsr. 2019. 105772.
- [37] Ismail MK, Hassan AA. Ductility and cracking behavior of reinforced self-consolidating rubberized concrete beams. J Mater Civ Eng. 2017;29(1):04016174. https:// doi. org/ 10. 1061/ (ASCE) MT. 1943- 5533. 00016 99.
- [38] Turki M, Bretagne E, Rouis MJ, Quéneudec M. Microstructure, physical and mechanical properties of mortar–rubber aggregates mixtures. Constr Build Mater. 2009;23(7):2715–22. https:// doi. org/ 10. 1016/j. conbu ildmat. 2008. 12. 019.
- [39] Piquer A, Ibañez C, Hernández-Figueirido D. Structural response of concrete-filled round-ended stub columns subjected to eccentric loads. Eng Struct. 2019;184:318–28. https:// doi. org/ 10. 1016/j. engst ruct. 2019. 01. 091.
- [40] CEN (European Committee for Standardization) (2005) EN 1993-1-1. Eurocode 3: Design of steel structures. Part 1.1: General rules and rules for buildings. Brussels, Belgium: Comite Europeen de Normalisation.
- [41] He L, Lin S, Jiang H. Confinement effect of concrete-filled steel tube columns with infill concrete of different strength grades. Front Mater. 2019;6:71. https:// doi. org/ 10. 3389/ fmats. 2019. 00071.
- [42] Shams M, Saadeghvaziri MA. State of the art of concrete-filled steel tubular columns. Struct J. 1997;94(5):558–71.
- [43] Gunawardena YK, Aslani F, Uy B, Kang WH, Hicks S. Review of strength behaviour of circular concrete filled sthttps:// doi. org/ 10. 1016/j. jcsr. 2019. 04. 010.
- [44] Hou CC, Han LH, Wang QL, Hou C. Flexural behavior of circular concrete filled steel tubes (CFST) under sustained load and chloride corrosion. Thin Walled Struct. 2016;107:182–96. https:// doi. org/ 10. 1016/j. tws. 2016. 02. 020.
- [45] Bentz EC. Sectional analysis of reinforced concrete members. Toronto: University of Toronto; 2000.
- [46] AISC 360-16. Specification for structural steel buildings. Chicago: American Institute of Steel Construction; 2016.
- [47] GB 50936-2014. Technical code for concrete filled steel tubular structures. Ministry of Housing and Urban-Rural Development of the People’s Republic of China. 2014.
- [48] Dundu M. Compressive strength of circular concrete filled steel tube columns. Thin Walled Struct. 2012;56:62–70. https:// doi. org/ 10. 1016/j. tws. 2012. 03. 008.
- [49] Liew JR, Xiong M. Design guide for concrete filled tubular members with high strength materials to Eurocode 4. Research Publish-ing; 2015.
- [50] Thai HT, Thai S, Ngo T, Uy B, Kang WH, Hicks SJ. Reliability considerations of modern design codes for CFST columns. J Constr Steel Res. 2020;177:106482.
- [51] Patel VI, Hassanein MF, Thai HT, Al Abadi H, Elchalakani M, Bai Y. Ultra-high strength circular short CFST columns: axisymmetric analysis, behaviour and design. Eng Struct. 2019;179:268–83. https:// doi. org/ 10. 1016/j. engst ruct. 2018. 10. 081999.
- [52] Tan K, Nichols JM. Properties of high-strength concrete filled steel tube columns. Mod Civ Struct Eng. 2017;1(1):58–77. https:// doi. org/ 10. 22606/ mcse. 2017. 11005.
- [53] Zhao H, Wang R, Lam D, Hou CC, Zhang R. Behaviours of circular CFDST with stainless steel external tube: slender columns and beams. Thin Walled Struct. 2020;158:107172. https:// doi. org/ 10. 1016/j. tws. 2020. 10717 2full GBfor DST.
- [54] Tao Z, Han LH, Zhao XL. Behaviour of concrete-filled double skin (CHS inner and CHS outer) steel tubular stub columns and beam-columns. J Constr Steel Res. 2004;60(8):1129–58. https:// doi. org/ 10. 1016/j. jcsr. 2003. 11. 008.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2af7ff2a-245a-4672-9bc2-c7ed5fd35e54