PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Potential Distribution of Five Native Grass Species in Northern Mexico and their Dynamics due to Climate Variability

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Grasslands are recognized as the most threatened communities on the planet due to environmental and anthropogenic disturbances. In the state of Chihuahua, Mexico, native grasslands have a great ecological importance due to their wide distribution; however, studies on the current and future potential distributions of grasslands, as well as their temporal dynamics based on climatic variability, are lacking. Thus, we analysed the potential distribution of five native grasses (Bouteloua curtipendula, Bouteloua gracilis, Leptochloa dubia, Digitaria californica and Setaria macrostachya) based on climatic factors. The present data of these species were consulted at the Global Biodiversity Information Facility (GBIF) and recorded with location information: latitude and longitude. This database was complemented with presence data of the five species from previous studies. To characterize the climate niche, the values of the climatic factors at the locations of the species presence, were obtained from the WorldClim. Then, current and future potential distributions of these native species, were generated based on three climate change scenarios, based on Representative Concentration Pathways - RCP2.6, RCP4.5 and RCP6.0). Under the RCP2.6 scenario, the estimated area of S. macrostachya was 12,525.5 ha, representing 7.4% of the state. For B. gracilis, the potential areas under the RCP4.5 and RCP6.0 scenarios were 20,391.49 and 23,079.08 ha, respectively. B. curtipendula represented the smallest area, with 4.6% under the scenario RCP2.6. The distribution of grassland species in northern Mexico is mainly determined by climatic factors; as it may apply for the rest of the grassland species within this area, so those results could increase our knowledge about their potential distribution.
Rocznik
Strony
73--83
Opis fizyczny
Bibliogr. 55 poz., rys., tab., wykr.
Twórcy
  • Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Periférico Francisco R. Almada Km 1, Chihuahua, Chih. 31000, México
  • Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Periférico Francisco R. Almada Km 1, Chihuahua, Chih. 31000, México
  • Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Periférico Francisco R. Almada Km 1, Chihuahua, Chih. 31000, México
  • Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Periférico Francisco R. Almada Km 1, Chihuahua, Chih. 31000, México
  • Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Periférico Francisco R. Almada Km 1, Chihuahua, Chih. 31000, México
  • Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Periférico Francisco R. Almada Km 1, Chihuahua, Chih. 31000, México
  • Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Periférico Francisco R. Almada Km 1, Chihuahua, Chih. 31000, México
Bibliografia
  • 1. Andersen L. E., Breisinger C., Jemio L. C., Mason-D'Croz D., Ringler C., Robertson R., Verner D., Wiebelt M. 2016 – Climate change impacts: Prospects for 2050 in Brazil, Mexico, and Peru – International Food Policy Research Institute (IFPRI), 12: 1-94.
  • 2. Anjos L. J. S., De Toledo P. M. 2018 – Measuring resilience and assessing vulnerability of terrestrial ecosystems to climate change in South America – PLoS ONE, 13: 1-16.
  • 3. Austin M. P., Van Niel K. P. 2011 – Improving species distribution models for climate change studies: Variable selection and scale – J. Biogeogr. 38: 1-8.
  • 4. Barker T. 2007 – Climate Change 2007: An Assessment of the Intergovernmental Panel on Climate Change – Change, 446: 12-17.
  • 5. Bellard C., Bertelsmeier C., Leadley P., Thuiller W., Courchamp F. 2012 – Impacts of climate change on the future of biodiversity – Ecol. Let. 15: 365-377.
  • 6. Benito Garzón M., Alía R., Robson T. M., Zavala M. A. 2011 – Intra-specific variability and plasticity influence potential tree species distributions under climate change - Glob. Ecol. Biogeog. 20: 766-778.
  • 7. Brambilla M., Saporetti F. 2014 – Modelling distribution of habitats required for different uses by the same species: Implications for conservation at the regional scale – Biol. Conserv. 17: 39-46.
  • 8. Bravo S., Cruz B., Edith B., Mendoza H., Luis J., Di J., Quiroz C., Lara M. R., Gerardo J., Olivares G. 2016 – Investigación y Ciencia distribution of oregano (Lippia spp.) in Mexico – Investigación y Ciencia de la Universidad Autónoma de Aguascalientes, 69: 21-25.
  • 9. Cardinale B. J., Duffy J. E., Gonzalez A., Hooper D. U., Perrings C., Venail P., Narwani A., MacE G. M., Tilman D., Wardle D. A., Kinzig A. P., Daily G. C., Loreau M., Grace J. B., Larigauderie A., Srivastava D. S., Naeem S. 2012 – Biodiversity loss and its impact on humanity – Nature, 486: 59-67.
  • 10. Cervantes J., Serna R., Salazar J., Pérez A., 2018 – Nicho ecológico fundamental de Ecnomiohyla miotympanum (Cope, 1863) con DIVA-GIS y MaxEnt – Rev. Biodivers. Neotrop, 8: 84-93.
  • 11. Çoban H. O., Örücü Ö. K., Arslan E. S. 2020 – Maxent modeling for predicting the current and future potential geographical distribution of Quercus libani Olivier – Sustain, 12: 1-17.
  • 12. CONAGUA 2011. – Analisis espacial de las regiones más vulnerables ante las sequías en México – Analisis Espacial de Las Regiones Más Vulnerables Ante Las Sequías en México – Comisión Nacional del Agua, pp. 5-43.
  • 13. Cortes L., Domínguez I., Lebgue T., Viramontes O., Melgoza A., Pinedo C. Camarillo J. 2014 – Variation in the distribution of four cacti species due to climate change in Chihuahua, Mexico – Intern. J. Environ. Res. Public Health, 11: 390-402.
  • 14. D'Atri P. 2007 – Pastizales del Mundo – Novedades de Biodiversidad en América Latina, 160: 1-2.
  • 15. Elith J., Graham C. H., Anderson R. P., Dudík M., Ferrier S., Guisan A., Hijmans R. J., Huettmann F., Leathwick J. R, Lehmann A., Li J., Lohmann L. G., Loiselle B. A., Manion G., Moritz C., Nakamura M., Nakazawa Y., Overton McC. M., Townsend Peterson A., Zimmermann N. E. 2006 – Novel methods improve prediction of species distributions from occurrence data – Ecography, 29: 129-151.
  • 16. Guisan A., Zimmermann N. E. 2000 – Predictive habitat distribution models in ecology – Ecol. Model. 135: 147-186.
  • 17. Gunderson L. H. 2000 – Ecological Resilience – in Theory and Application – Ann. Rev. Ecol. System. 31: 425-439.
  • 18. Hijmans R. J., Cameron S. E., Parra J. L., Jones P. G. Jarvis A. 2005 – Very high resolution interpolated climate surfaces for global land areas – Intern. J. Climatol. 25: 1965-1978.
  • 19. Hirota M., Holmgren M., Van Nes E. Scheffer M. 2011 – Global Resilience of Tropical Forest and Savanna to Critical Transitions – Science, 334: 232-235.
  • 20. Hu Y., Nacun B. 2018 – An Analysis of Land-Use Change and Grassland Degradation from a Policy Perspective in Inner Mongolia, China, 1990-2015 – Sustainability, 10: 1-22.
  • 21. INEGI 2016 – Impacto de La Sequía en los Suelos Agroforestales – Instituto Nacional de Estadística y Geografía, Aguascalientes, México.
  • 22. Maciel-Mata C. A., Manríquez-Morán N., Octavio Aguilar P., Sánchez-Rojas G. 2015 – El área de distribución de las especies: revisión del concepto – Acta Universitaria, 2: 3-19.
  • 23. Manjarrez-Dominguez C., Pinedo-Alvarez A., Pinedo-Alvarez C., Villarreal-Guerrero F., Cortes-Palacios L. 2015 – Vegetation landscape analysis due to land use changes on arid lands – Pol. J. Ecol. 2: 167-174.
  • 24. Martins A. C., Silva D. P., De Marco P. Melo G. A. R. 2015 – Species conservation under future climate change: the case of Bombus bellicosus, a potentially threatened South American bumblebee species – J. Insect Conserv. 1: 33-43.
  • 25. Morales N. C., Avendaño C., Melgoza A., Gil K., Quero A., Jurado P., Martinez M. 2016 - Caracterización morfológica y molecular de poblaciones de pasto banderita (Bouteloua curtipendula) en Chihuahua. México – Revista Mexicana de Ciencias Pecuarias, 4: 455-69.
  • 26. Morales N. C., Madrid L., Melgoza A., Martínez M., Arévalo S., Rascón Q., Jurado P. 2009 - Análisis morfológico de la diversidad del pasto navajita [Bouteloua gracilis (Willd. ex Kunth) Lag. ex Steud.] en Chihuahua, México – Técnica Pecuaria en México, 3: 245-256.
  • 27. Morales N. C., Melgoza A., Jurado P., Martínez M., Avendaño C. 2012 – Caracterización fenotípica y molecular de poblaciones de zacate punta blanca (Digitaria californica (Benth.) henr.) – Revista Mexicana de Ciencias Pecuarias, 2: 171-84.
  • 28. Morales-Nieto C., Rivero-Hernández O., Melgoza-Castillo A., Jurado-Guerra P., Martínez-Salvador M. 2013 – Caracterización morfológica y molecular de Leptochloa dubia (Poaceae) en Chihuahua, México – Polibotánica, 36: 79-94.
  • 29. Morales-Nieto C. R., Avendaño-Arrazate C., Melgoza-Castillo A., Martínez-Salvador M., Jurado-Guerra P. 2015 – Caracterización morfológica y molecular de poblaciones de zacate tempranero (Setaria macrostachya Kunth) en Chihuahua, México – Phyton, 1: 190-200.
  • 30. Moreira C. 2015 – Nicho Ecológico – Revista de Ciência Elementar, 4: 211.
  • 31. Nafus M. G., Tuberville T. D., Buhlmann K. A., Todd B. D. 2017 – Precipitation quantity and timing affect native plant production and growth of a key herbivore, the desert tortoise, in the Mojave Desert – Climate Change Responses, 1: 1-10.
  • 32. Naranjo E. J., Amador-Alcalá S. A., Falconi-Briones F. A. Reyna-Hurtado R. A. 2015 - Distribución, abundancia y amenazas a las poblaciones de tapir (Tapirus bairdii) y pecarí de labios blancos (Tayassu pecari) en México – Therya, 1: 227-249.
  • 33. Nevárez Rodríguez M., Estrada De la Cruz E., Valles Aragón C., Manjarrez Dominguez C. Sigala Bustamante M. 2016 – Modelado del potencial fotovoltaico del estado de Chihuahua – TECNOCIENCIA Chihuahua, 3: 154-160.
  • 34. Ortega R. M. M., Pendás L. C. T., Ortega M. M., Abreu A. P., Cánovas A. M. 2009 – El coeficiente de correlación de los rangos de spearman caracterización – Revista Habanera de Ciencias Médicas, 2: 1-19.
  • 35. Pearson to Spearman Luis F. 2007 – Selecciones De Pearson a Spearman – Revista Colombiana de Ciencias Pecuarias, 2: 183-192.
  • 36. Pecl G. T., Araujo M. B., Bell J., Blanchard J., Bonebrake T. C., Chen I., Clark T. D., Colwell R. K., Danielsen F., Evengard B., Robinson S. 2017 – Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being – Science, 6332: 1-9.
  • 37. Phillips S., Anderson R. Schapire R. 2006 - Maximum entropy modeling of species geographic distributions – Ecol. Model. 190: 231-259.
  • 38. Phillips S. J., Dudi M. 2008 – Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation – Ecography, 31: 161-175.
  • 39. Ramos J. H., Santos R. R., Ramos A. H., Cuevas X. G., Hernández-Máximo E., Uicab J. V. C., López D. S. 2018 – Current and future distribution of Cedrela odorata in Mexico – Acta Botánica Mexicana, 124: 117-134.
  • 40. Ran C. A. O., Weiguo J., Lihua Y., Wenjie W. L., Zhongliang V. 2014 – Inter-annual variations in vegetation and their response to climatic factors in the upper catchments of the Yellow River from 2000 to 2010 – J. Geogr. Sci. 24: 963-979.
  • 41. Reyer C. P. O., Brouwers N., Rammig A., Brook B. W., Epila J., Grant R. F., Holmgren M., Langerwisch F., Leuzinger S., Lucht W., Medlyn B., Pfeifer M., Steinkamp J., Vanderwel M. C., Verbeeck H., Villela D. M. 2015 – Forest resilience and tipping points at different spatio-temporal scales: Approaches and challenges – J. Ecol. 103: 5-15.
  • 42. Reynoso-Santos R., Hernández-Pérez M. de J., López-Báez W., Hernández-Ramos J., Muñoz Flores H. J., Vidal J., Reynoso-Santos M. D. 2018 – The ecological niche as a tool for predicting potential areas of two pine species – Rev. Mex. Cien. For., 9: 47-70.
  • 43. Rockström J., Steffen W., Noone K., Persson A., Chapin F. S., Lambin E. F., Lenton T. M., Scheffer M., Folke C., Schellnhuber H. J., Nykvist B., De Wit C. A., Hughes T., Van Der Leeuw S., Rodhe H., Sörlin S., Snyder P. K., Costanza R., Svedin U., Foley J. A. 2009 – A safe operating space for humanity - Nature, 461: 472-475.
  • 44. SAS Institute Inc. 2006 – Statistical Analysis System 9.1.3 – User's guide. Cary, NC, USA.
  • 45. Sayre N. F., Carlisle L., Huntsinger L., Fisher G., Shattuck A. 2012 – The role of range-lands in diversified farming systems: Innovations, obstacles, and opportunities in the USA – Ecol. Society, 17: 43.
  • 46. Scheffer M., Carpenter S., Foley J. A., Folke C., Walker B. 2001 – Catastrophic shifts in ecosystems – Nature, 413: 591-596.
  • 47. Thomas C. D., Cameron A., Green R. E., Bakkenes M., Beaumont L. J., Collingham Y. C., Erasmus B. F. N., De Siqueira M. F., Grainger A., Hannah L., Hughes L., Huntley B., Van Jaarsveld A. S., Midgley G. F., Miles Ortega-Huerta M. A., Peterson A. T., Phillips O. L., Williams S. E. 2004 – Extinction risk from climate change – Nature, 427: 145-148.
  • 48. Thuiller W., Albert C., Araújo M. B., Berry P. M., Cabeza M., Guisan A., Hickler T., Midgley G. F., Paterson J., Schurr F. M., Sykes M. T., Zimmermann N. E. 2008 – Predicting global change impacts on plant species' distributions: Future challenges – Perspect. Plant Ecol. Evol. Syst. 9: 137-152.
  • 49. UNEP 2016 – The Emissions Gap Report 2016 – United Nations Environment Pro-gramme (UNEP), Nairobi.
  • 50. Urbani F., D'Alessandro P., Biondi M. 2017 – Using maximum entropy modeling (MaxEnt) to predict future trends in the distribution of high altitude endemic insects in response to climate change. Bull - Insectology, 70: 189-200.
  • 51. Valdés R. J., Dávila A. 1995 – Clasificación de los géneros de gramíneas (Poaceae) mexicanas – Acta Botánica Mexicana, 33: 10-37.
  • 52. Vuuren D. P., Edmonds J., Kainuma M., Riahi K., Thomson A., Hibbard K., Hurtt G. C., Kram T., Krey V., Lamarque J. F., Masui T., Meinshausen M., Nakicenovic N., Smith S. J., Rose S. K. 2011 – The representative concentration pathways: An overview – Climatic Change, 109: 5-31.
  • 53. Xu Z., Ren H., Cai J., Wang R., Li M. H., Wan S., Han X., Lewis B. J., Jiang Y. 2014 – Effects of experimentally-enhanced precipitation and nitrogen on resistance, recovery and resilience of a semi-arid grassland after drought – Oecologia, 176: 1187-1197.
  • 54. Zemp D., Schleussner C. F., Barbosa H., Rammig A. 2017b – Deforestation effects on Amazon forest resilience – Geophys. Res. Let. 44: 6182-6190.
  • 55. Zemp D. C., Schleussner C. F., Barbosa H. M. J., Hirota M., Montade V., Sampaio G., Staal A., Wang-Erlandsson L., Rammig A. 2017a – Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks - Nature Communications, 14: 337-359.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2af3aa66-a190-4c1f-8c40-e00ffb351bb9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.