PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stretchable optical fibre sensor for soft surgical robot shape reconstruction

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Soft robotics presents several advantages in the field of minimally invasive surgery. However, existing methods have not fully addressed problems related to soft robot shape sensing due to the complex motion of soft robots and the stretchable nature of the soft materials employed. This study demonstrates the shape sensing of a soft robot with a helically embedded stretchable fibre Bragg grating (FBG)-based optical fibre sensor. Unlike straight FBG embedding configurations, this unique helical configuration prevents sensor dislocation, supports material stretchability, and facilitates shape detection for various soft-robot movements. The proposed soft-robot design principle and FBG sensor are analysed and their fabrication process, which includes an FBG-written optical fibre sensor, is described. Bending experiments are conducted with the soft robot, the wavelengths of FBG sensors at different bending and telescopic movement states are obtained, and the soft-robot shape is reconstructed. Experimental results demonstrate that the maximum error between FBG sensing and the actual bending state is less than 2.5%, validating the feasibility and effectiveness of the proposed helical stretchable FBG sensing method for the shape measurement of soft robots. These results indicate the potential and applicability of this shape-sensing approach in biomedical research.
Czasopismo
Rocznik
Strony
589--604
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
  • Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, 100192, China
  • Beijing Laboratory of Optical Fiber Sensing and System, Beijing Information Science and Technology University, Beijing, 100016, China
autor
  • Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, 100192, China
  • Beijing Laboratory of Optical Fiber Sensing and System, Beijing Information Science and Technology University, Beijing, 100016, China
autor
  • Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, 100192, China
  • Beijing Laboratory of Optical Fiber Sensing and System, Beijing Information Science and Technology University, Beijing, 100016, China
autor
  • Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, 100192, China
  • Beijing Laboratory of Optical Fiber Sensing and System, Beijing Information Science and Technology University, Beijing, 100016, China
autor
  • Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, 100192, China
  • Beijing Laboratory of Optical Fiber Sensing and System, Beijing Information Science and Technology University, Beijing, 100016, China
autor
  • Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, 100192, China
  • Beijing Laboratory of Optical Fiber Sensing and System, Beijing Information Science and Technology University, Beijing, 100016, China
autor
  • Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, 100192, China
Bibliografia
  • [1] SUZUMORI K., IIKURA S., TANAKA H., Applying a flexible microactuator to robotic mechanisms, IEEE Control Systems Magazine 12(1), 1992, pp. 21–27, DOI: 10.1109/37.120448.
  • [2] PICCIGALLO M., SCARFOGLIERO U., QUAGLIA C., PETRONI G., VALDASTRI P., MENCIASSI A., DARIO P., Design of a novel bimanual robotic system for single-port laparoscopy, IEEE/ASME Transactions on Mechatronics 15(6), 2010, pp. 871–878, DOI: 10.1109/TMECH.2010.2078512.
  • [3] MARTINEZ R.V., BRANCH J.L., FISH C.R., JIN L., SHEPHERD R.F., NUNES R.M.D., SUO Z., WHITESIDES G.M., Robotic tentacles with three-dimensional mobility based on flexible elastomers, Advanced Materials 25(2), 2013, pp. 205–212, DOI: 10.1002/adma.201203002.
  • [4] GONG Z., CHENG J., CHEN X., SUN W., FANG X., HU K., XIE Z., WANG T., WEN L., A bio-inspired soft robotic arm: kinematic modeling and, hydrodynamic experiments, Journal of Bionic Engineering 15, 2018, pp. 204–219, DOI: 10.1007/s42235-018-0016-x.
  • [5] LUO M., SKORINA E.H., TAO W., CHEN F., OZEL S., SUN Y., ONAL C.D., Toward modular soft robotics: proprioceptive curvature sensing and sliding-mode control of soft bidirectional bending modules, Soft Robotics 4(2), 2017, pp. 117–125, DOI: 10.1089/soro.2016.0041.
  • [6] ZOLFAGHARIAN A., KOUZANI A.Z., KHOO S.Y., MOGHADAMET A.A., GIBSON I., KAYNAKA A., Evolution of 3D printed soft actuators, Sensors and Actuators A: Physical 250, 2016, pp. 258–272, DOI: 10.1016/j.sna.2016.09.028.
  • [7] RANZANI T., GERBONI G., CIANCHETTI M., MENCIASSI A., A bioinspired soft manipulator for minimally invasive surgery, Bioinspiration & Biomimetics 10(3), 2015, article 035008, DOI: 10.1088/1748-3190/10/3/035008.
  • [8] POLYGERINOS P., WANG Z., GALLOWAY K.C., WOOD R.J., WALSH C.J., Soft robotic glove for combined assistance and at-home rehabilitation, Robotics and Autonomous Systems 73, 2015, pp. 135–143, DOI: 10.1016/j.robot.2014.08.014.
  • [9] RANZANI T., CIANCHETTI M., GERBONI G., DE FALCO I., MENCIASSI A., A soft modular manipulator for minimally invasive surgery: design and characterization of a single module, IEEE Transactions on Robotics 32(1), 2016, pp. 187–200, DOI: 10.1109/TRO.2015.2507160.
  • [10] PAYNE C.J., WAMALA I., BAUTISTA-SALINAS D., SAEED M., VAN STORY D., THALHOFER T., HORVATH M.A., ABAH C., DEL NIDO P.J., WALSH C.J., VASILYEV N.V., Soft robotic ventricular assist device with septal bracing for therapy of heart failure, Science Robotics 2(12), 2017, DOI: 10.1126/scirobotics.aan6736.
  • [11] NGUYEN T.D., HAN H.S., SHIN H.Y., NGUYEN C.T., PHUNG H., HOANG H.V., CHOI H.R., Highly sensitive flexible proximity tactile array sensor by using carbon micro coils, Sensors and Actuators A: Physical 266, 2017, pp. 166–177, DOI: 10.1016/j.sna.2017.09.013.
  • [12] OZEL S., KESKIN N.A., KHEA D., ONAL C.D., A precise embedded curvature sensor module for soft-bodied robots, Sensors and Actuators A: Physical 236, 2015, pp. 349–356, DOI: 10.1016/j.sna.2015.09.041.
  • [13] WANG H., ZHANG R., CHEN W., LIANG X., PFEIFER R., Shape detection algorithm for soft manipulator based on fiber Bragg gratings, IEEE/ASME Transactions on Mechatronics 21(6), 2016, pp. 2977–2981, DOI: 10.1109/TMECH.2016.2606491.
  • [14] MONZON-HERNANDEZ D., MARTINEZ-RIOS A., TORRES-GOMEZ I., SALCEDA-DELGADO G., Compact optical fiber curvature sensor based on concatenating two tapers, Optics Letters 36(22), 2011, pp. 4380–4382, DOI: 10.1364/OL.36.004380.
  • [15] ZHOU W., ZHOU Y., DONG X., SHAO L.Y., CHENG J., ALBERT J., Fiber-optic curvature sensor based on cladding-mode Bragg grating excited by fiber multimode interferometer, IEEE Photonics Journal 4(3), 2012, pp. 1051–1057, DOI: 10.1109/JPHOT.2012.2202895.
  • [16] HE Y., ZHANG X., ZHU L., SUN G., LOU X., DONG M., Optical fiber sensor performance evaluation in soft polyimide film with different thickness ratio, Sensors 19(4), 2019, article 790, DOI: 10.3390/s19040790.
  • [17] SUN G., LI H., DONG M., LOU X., ZHU L., Optical fiber shape sensing of polyimide skin for a flexible morphing wing, Applied Optics 56(33), 2017, pp. 9325–9332, DOI: 10.1364/AO.56.009325.
  • [18] HE Y., DONG M., SUN G., MENG F., SONG Y., ZHU L., Shape monitoring of morphing wing using micro optical sensors with different embedded depth, Optical Fiber Technology 48, 2019, pp. 179–185, DOI: 10.1016/j.yofte.2018.12.025.
  • [19] HE Y., ZHU L., SUN G., MENG F., SONG Y., Fiber Brag grating monitoring of a morphing wing based on a polyvinyl chloride reinforced silicone substrate, Optical Fiber Technology 50, 2019, pp. 145–153, DOI: 10.1016/j.yofte.2019.03.019.
  • [20] ZHAO H., JALVING J., HUANG R., KNEPPER R., RUINA A., SHEPHERD R., A helping hand: soft orthosis with integrated optical strain sensors and EMG control, IEEE Robotics & Automation Magazine 23(3), 2016, pp. 55–64, DOI: 10.1109/MRA.2016.2582216.
  • [21] XU R., YURKEWICH A., PATEL R.V., Curvature, torsion, and force sensing in continuum robots using helically wrapped FBG sensors, IEEE Robotics and Automation Letters 1(2), 2016, pp. 1052–1059, DOI: 10.1109/LRA.2016.2530867.
  • [22] HE Y., ZHU L., SUN G., YU M., DONG M., Design, measurement and shape reconstruction of soft surgical actuator based on fiber Bragg gratings, Applied Sciences 8(10), 2018, article 1773, DOI: 10.3390/app8101773.
  • [23] SEARLE T.C., ALTHOEFER K., SENEVIRATNE L., LIU H., An optical curvature sensor for flexible manipulators, [In] 2013 IEEE International Conference on Robotics and Automation, 2013, pp. 4415–4420, DOI: 10.1109/ICRA.2013.6631203.
  • [24] SILVA A., CATARINO A., CORREIA M., FRAZAO O., Design and characterization of a wearable macro-bending fiber optic sensor for human joint angle determination, Optical Engineering 52(12), 2013, article 126106, DOI: 10.1117/1.OE.52.12.126106.
  • [25] GE J., FENG H., CHEN Y., TSE Z.T.H., FOK M.P., Spiral-structured fiber Bragg grating for contact force sensing through direct power measurement, Optics Express 22(9), 2014, pp. 10439–10445, DOI: 10.1364/OE.22.010439.
  • [26] GE J., JAMES A.E., XU L., CHEN Y., KWOK K.W., FOK M P., Bidirectional soft silicone curvature sensor based on off-centered embedded fiber Bragg grating, IEEE Photonics Technology Letters 28(20), 2016, pp. 2237–2240, DOI: 10.1109/LPT.2016.2590984.
  • [27] SAREH S., NOH Y., LI M., RANZANI T., LIU H., ALTHOEFER K., Macrobend optical sensing for pose measurement in soft robot arms, Smart Materials and Structures 24(12), 2015, article 125024, DOI: 10.1088/0964-1726/24/12/125024.
  • [28] XU L., LIU N., GE J., WANG X., FOK M.P., Stretchable fiber-Bragg-grating-based sensor, Optics Letters 43(11), 2018, pp. 2503–2506, DOI: 10.1364/OL.43.002503.
  • [29] RUS D., TOLLEY M.T., Design, fabrication and control of soft robots, Nature 521(7553), 2015, pp. 467–475, DOI: 10.1038/nature14543.
  • [30] CONNOLLY F., WALSH C.J., BERTOLDI K., Automatic design of fiber-reinforced soft actuators for trajectory matching, Proceedings of the National Academy of Sciences of the United States of America 114(1), 2017, pp. 51–56, DOI: 10.1073/pnas.1615140114.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2af14c88-3a96-4a47-a5ee-9d94af0bb2a8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.